Let $v$ be the vector $\sum_{i \leq n} e_i$ and $w$ be $\sum_{i \leq n} i e_i$. Using dot products, the angle between $v$ and $w$ can easily be shown* to approach $\frac \pi 6$ as $n \to \infty$.
What is the geometric understanding of this? Can this be proved using synthetic geometry - or at least explained intuitively?
*Proof:
$$\begin{align*} \theta_n &= \arccos \frac {|v \cdot w|} {|v||w|} \\ &= \arccos \frac {\sum_{i \leq n} i} {\sqrt{\sum_{i \leq n} 1^2 } \sqrt{\sum_{i \leq n} i^2}} \\ &= \arccos \frac {n(n+1)}{2} \frac{\sqrt 6}{\sqrt{n}\sqrt{n(n+1)(2n+1)}} \\ &= \arccos \frac {\sqrt 6} 2 \sqrt{\frac {n+1}{2n+1}} \\ &\to \frac \pi 6 \end{align*}$$