Consider the integral $$I=\int_0^\infty \frac{f(x)}{1+x^2}\mathrm{d}x$$ now make a change of variable to $x=\dfrac{1}{t}$, and so $\mathrm{d}x=-\dfrac{1}{t^2}\mathrm{d}t$. The integral becomes $$I=\int_0^\infty \frac{f\left(\frac{1}{t}\right)}{1+t^2}\mathrm{d}t$$ and so $$I=\frac{1}{2}\int_0^\infty \frac{f(x)+f\left(\frac{1}{x}\right)}{1+x^2}\mathrm{d}x$$ Hence the question: what are the functions $f(x)$ such that the quantity $L(f)=f(x)+f\left(\frac{1}{x}\right)$ has a "nice" value that makes the integral easy?
For example, some uninteresting cases are:
$L(\ln(x))=0$ that provides $\displaystyle\int_0^\infty \dfrac{\ln(x)}{1+x^2}\mathrm{d}x=0$
$L(\arctan(x))=\frac{\pi}{2}$ that provides $\displaystyle\int_0^\infty \dfrac{\arctan(x)}{1+x^2}\mathrm{d}x=\dfrac{\pi^2}{8}$
$L(\sin(\ln(x)))=0$ then $\displaystyle\int_0^\infty \dfrac{\sin(\ln(x))}{1+x^2}\mathrm{d}x=0$
and in general every time $g(x)$ is odd and the integral still converges, then $\displaystyle\int_0^\infty \dfrac{g(\ln(x))}{1+x^2}\mathrm{d}x=0$
I wonder if there are some other special or lesser known functions that have the charateric of having a nice $L(f)$. Tell me if you come up with something.