Since the proof was asked for Asin(x)+Bsin(y), based on the prior answer, I expand this time with a Python example for some verification:
$$
A \sin(a+b) = A \sin(a) \cos(b) + A \cos(a) \sin(b) \ \ \ \ \ \ (1) \\
B \sin(a-b) = B \sin(a) \cos(b) - B \cos(a) \sin(b) \ \ \ \ \ \ (2)
$$
(1) + (2) gives
$$
A \sin(x) + B \sin(y) = (A+B) \sin(\frac{x+y}{2}) \cos(\frac{x-y}{2}) + (A-B) \cos(\frac{x+y}{2}) \sin(\frac{x-y}{2})
$$
where
$$
x = a + b \\ y = a - b
$$
substitute
$$
Q = (A+B) \sin(\frac{x+y}{2}) \\
R = (A-B) \cos(\frac{x+y}{2}) \\
P = \frac{x-y}{2}
$$
then
$$
A \sin(x) + B \sin(y) = Q \cos P + R \sin P = \sqrt{Q^2+R^2} \sin(P+\phi)
$$
where
$$
\tan \phi = \frac{Q}{R} \\
$$
Proof in Python:
import numpy as np
A, B, x, y = 3, 4, 5, 6
Q, R, P = (A+B)*np.sin((x+y)/2), (A-B)*np.cos((x+y)/2), (x-y)/2
print(A*np.sin(x)+B*np.sin(y), np.sqrt(Q*Q+R*R)*np.sin(P+np.arctan2(Q, R)))
Result:
-3.9944348167851187 -3.9944348167851187