I'm trying to solve below exercise in Brezis' Functional Analysis, i.e.,
Exercise 4.8 Let $(\Omega, \mathcal F, \mu)$ be a $\sigma$-finite measure space. Let $X$ be a closed vector subspace of $L^1 (\Omega)$ such that $$ X \subset \bigcup_{q \in (1, \infty]} L^q (\Omega). $$
- Prove that there is $p>1$ such that $X \subset L^p (\Omega)$.
- Prove that there is $C \in [0, \infty)$ such that $$ \|f\|_p \le C \|f\|_1 \quad \forall f \in X. $$
Could you confirm if my below attempt is correct?
Proof 1. It follows from $X$ is closed in $L^1 (\Omega)$ that $X$ is complete w.r.t. $\| \cdot \|_1$. For each $n \in \mathbb N^*$, $$ \begin{align} Y_n &:= \{f \in L^1 (\Omega) : \|f\|_{1+(1/n)} \le n\} \\ X_n &:= X \cap Y_n . \end{align} $$
We have $Y_n$ is closed in $L^1 (\Omega)$. Then $X_n$ is closed in $(X, \|\cdot\|_1)$. Let $f \in X \cap L^q (\Omega)$ for some $q>1$. By interpolation inequality, $$ \|f\|_r \le \|f\|_1^\alpha \|f\|_q^{1-\alpha} \quad \forall r \quad \text{s.t.} \quad \frac{1}{r} = \frac{\alpha}{1} + \frac{1-\alpha}{q}. $$
So $X = \bigcup_n X_n$. By Baire category theorem, there is $p$ such that $$ \operatorname{int}_{(X, \|\cdot\|_1)} (X_p) \neq \emptyset, $$ where $\operatorname{int}_{(X, \|\cdot\|_1)} (X_p)$ is the interior of $X_p$ in $(X, \|\cdot\|_1)$. Fix $f \in \operatorname{int}_{(X, \|\cdot\|_1)} (X_p)$. There is $r>0$ such that $$ B_{(X, \|\cdot\|_1)} (f, r) \subset X_p \subset L^p(\Omega). $$
Here $B_{(X, \|\cdot\|_1)} (f, r)$ is the open ball centered at $f$ with radius $r$ in $(X, \|\cdot\|_1)$. Let $g \in X$ be arbitrary. Because $X$ is a vector space, there is $\lambda>0$ such that $$ \lambda f + (1-\lambda)g \in B_{(X, \|\cdot\|_1)} (f, r). $$
So $\lambda f + (1-\lambda)g \in L^p(\Omega)$. We already have $f \in L^p(\Omega)$. Thus $g \in L^p(\Omega)$. Hence $X \subset X_p$.
- Consider the embedding $$ T:X \to L^p (\Omega), f \mapsto f. $$
Then $T$ is linear. It suffices to prove that $T$ is continuous. Notice that $X$ and $L^p (\Omega)$ are both Banach spaces. By closed graph theorem, it suffices to prove that the graph of $T$ is closed.
Let $u,u_n \in X$ and $f \in L^p (\Omega)$ such that $(u_n, u_n) \to (u, f)$ in $X \times L^p$. There is a sub-sequence $\varphi$ of $\mathbb N$ such that $u_{\varphi (n)} \to u$ $\mu$-a.e. Clearly, $(u_{\varphi(n)})$ is a Cauchy sequence in $L^p (\Omega)$. So $u_{\varphi (n)} \to u$ in $L^p$. Hence $u=f$ $\mu$-a.e. This completes the proof.