If $${a_n} = \sum\limits_{r = 0}^n {\frac{1}{{{}^n{C_r}}}} = \frac{1}{{{}^n{C_0}}} + \frac{1}{{{}^n{C_1}}} + \frac{1}{{{}^n{C_2}}} + \ldots + \frac{1}{{{}^n{C_n}}},$$ then find the value of $$\sum\limits_{r = 0}^n {\frac{r}{{{}^n{C_r}}}}$$ in terms of $a_n$. (Where ${{}^n{C_r}}$ is $\frac{{n!}}{{r!\left( {n - r} \right)!}}$.)
Not able to solve it as ${{}^n{C_r}}$ comes in the denominator.