Let $X$ be any random variable with finite mean. To find $\mathbf{E}[X \mid X \wedge t]$, note that we may write
$$ \mathbf{E}[X \mid X \wedge t] = h(X \wedge t) $$
for some Borel-measurable function $h$, which is a solution of the functional equation of the form
$$
\bbox[color:navy; padding: 10px; background: #F0F8FF;]{ \mathbf{E}[X \psi(X \wedge t)]
= \mathbf{E}[h(X \wedge t)\psi(X \wedge t)] } \tag{1}
$$
for any bounded Borel-measurable test function $\psi$. However,
\begin{align*}
\bbox[color:navy; padding: 3px; background: #F0F8FF;]{\text{LHS of (1)}}
&= \mathbf{E}[X \psi(X) \mathbf{1}_{\{X < t\}}] + \mathbf{E}[X \mathbf{1}_{\{X \geq t\}}]\psi(t) \\
&= \mathbf{E}[X \psi(X) \mathbf{1}_{\{X < t\}}] + \mathbf{E}[X \mid X \geq t]\psi(t)\mathbf{P}(X \geq t)
\end{align*}
and
\begin{align*}
\bbox[color:navy; padding: 3px; background: #F0F8FF;]{\text{RHS of (1)}}
&= \mathbf{E}[h(X) \psi(X) \mathbf{1}_{\{X < t\}}] + h(t)\psi(t)\mathbf{P}(X \geq t).
\end{align*}
Plugging these into $\text{(1)}$ and comparing both sides, we find a solution $h$ of the form
$$ h(x) = x \mathbf{1}_{\{x < t\}} + \mathbf{E}[X \mid X \geq t] \mathbf{1}_{\{x = t\}} $$
and hence
$$ \bbox[color: #4B0000; padding: 10px; background: #FFF8F0; border: 1px dotted #8B0000;]{
\begin{aligned}
\mathbf{E}[X \mid X \wedge t]
&= h(X \wedge t) \\
&= X \mathbf{1}_{\{X < t\}} + \mathbf{E}[X \mid X \geq t] \mathbf{1}_{\{X \geq t\}}
\end{aligned}
} $$
holds almost surely.
Finally, in OP's case, all we have to do is compute $\mathbf{E}[X \mid X > t]$, which can be easily done by invoking the memoryless property of the exponential distribution.
A similar computation can be done to find $\mathbf{E}[X \mid X \vee t]$.