It is required to show that if $(r,s)=1$, then $\phi(rs)=\phi(r)\phi(s)$, with an argument of group theory, where $\phi$ is the Euler totient function and $(\cdot,\cdot)$ is the gcd.
This is the second exercise of the following problems:
$(i)$ Let $G=\langle a \rangle$ have order $rs$, where $(r,s)=1$. Show that there are unique $b,c\in G$ with $b$ of order $r$, $c$ of order $s$ and $a=bc$.
$(ii)$ Use part $(i)$ to prove that if $(r,s)=1$, then $\phi(rs)=\phi(r)\phi(s)$.
Number $(i)$ was solved without problem. Note that $b=a^{qs}$ and $c=a^{pr}$ were chosen.
Number $(ii)$ is not clear the argument. Here is what has been tried:
Let $(r,s)=1$. By $(i)$, it follows that $\langle a \rangle = \langle a^{pr}a^{qs} \rangle$ for some integers $p,q$.
Claim: $\langle a^{pr} \rangle \langle a^{qs} \rangle = \langle a^{pr}a^{qs} \rangle$.
Let $x \in \langle a^{pr} \rangle \langle a^{qs} \rangle$, then $x = (a^{pr})^{k_1} (a^{qs})^{k_2}$ for some integers $k_1, k_2$. Thus, $x = a^{prk_1+qsk_2}$. Since $\langle a \rangle = \langle a^{pr}a^{qs} \rangle$, it follow that $x\in\langle a \rangle$. Therefore $x\in\langle a^{pr}a^{qs} \rangle$.
Now suppose $x \in \langle a^{pr}a^{qs} \rangle$, then $x = (a^{pr}a^{qs})^k$ for some integer $k$. Thus, $x = (a^{pr})^k(a^{qs})^k$. Therefore $x \in \langle a^{pr} \rangle \langle a^{qs} \rangle$.
Since $\langle a \rangle$ has order $rs$, the number of generators of $\langle a \rangle = G$ is $\phi(rs)$.
By the other hand, since $\langle a^{pr} \rangle$ has orden $s$ and $\langle a^{qr} \rangle$ has orden $r$, the number of generators of $\langle a^{pr} \rangle \langle a^{qr} \rangle = G$ is $\phi(r)\phi(s)$.
Thus, $$\phi(rs)=\phi(r)\phi(s)$$
Related articles have already been read.
An Introduction to Theory of Groups by Joseph J. Rotman - Exercise 2.21 - (ii)