(i) Let $G = \langle a \rangle$ have order $rs$, where $(r,s) = 1$. Show that there are unique $b,c \in G$ with $b$ of order $r$, $c$ of order $s$ and $a = bc$.
(ii) Use part (i) to prove that if $(r,s) = 1$, then $\phi(rs) = \phi(r) \phi(s)$.
I would like to a hint. I don't have idea how (i) helps me to prove (ii).
P.S.: $\phi$ is the Euler function: $\phi(1) = 1$ and $\phi(n) = |\{ k \ ; \ 1 \leq k < n \ and \ (k,n) = 1 \}|$.
EDIT:
My attempt after receive the hint.
Affirmation 1: Let be $G = \langle a \rangle$ with order $n$, then $a^k$ is a generator of $G$ if and only if $(k,n) = 1$
$(\Longrightarrow)$
Exists $x \in \mathbb{Z}$ such that $(a^k)^x = a$, then $kx \equiv 1 \mod n$ and then exists $y \in \mathbb{Z}$ such that $kx + ny = 1$, so $(k,n) = 1$
$(\Longleftarrow)$
exists $x, y \in \mathbb{Z}$ such that $kx + ny = 1$, then
$$a^{kx + ny} = a$$ $$a^{mkx+mny} = a^m$$ $$a^{mkx} = a^m$$ $$(a^k)^{mx} = a^m, \forall m \in \mathbb{Z}. \square$$
By the part $(i)$ of exercise, $|\langle a \rangle| = |\langle b \rangle| |\langle c \rangle|$ and $\phi(rs) = |\langle a \rangle|$, $\phi(r) = |\langle b \rangle|$ and $\phi(s) = |\langle c \rangle|$ by the Affirmation 1, then $\phi(rs) = \phi(r)\phi(s)$. $\square$