We have
$$\frac{\sin ^{-1}(x)}{\sqrt{1-x^2}}=\frac{\sqrt{\pi }}{2}\sum_{n=0}^\infty \frac{ \Gamma (n+1)}{\Gamma \left(n+\frac{3}{2}\right)}x^{2 n+1}$$ Assuming $a>0$
$$I(a)=\int_0^1 \frac{\sin ^{-1}(x)}{\sqrt{1-x^2}}x^a\,dx=\frac{\sqrt{\pi }}{2}\sum_{n=0}^\infty\frac{\Gamma (n+1)}{(2 n+2+a) \Gamma \left(n+\frac{3}{2}\right)}$$
$$I(a)=\frac 1{a+2} \,\,\,
_3F_2\left(1,1,\frac{a+2}{2};\frac{3}{2},\frac{a+4}{2};1\right
)$$ which is the same (numerically check) as
$$\frac{\pi ^{3/2} \,\Gamma \left(\frac{a+1}{2}\right)}{4
\Gamma \left(\frac{a+2}{2}\right)}-\frac{\pi \Gamma (a+1)}{2^{(a+2)}\,\Gamma
\left(\frac{a+3}{2}\right)^2}\,
_3F_2\left(\frac{1}{2},\frac{a+1}{2},\frac{a+2}{2};
\frac{a+3}{2},\frac{a+3}{2};1\right)$$ given by Mathematica for the original integral.
Edit
I do not see how to expand the result for small values of $a$. But, back to
$$x \sin^a(x)=x^{a+1}\,\left(\frac{\sin (x)}{x}\right)^a$$
$$\left(\frac{\sin (x)}{x}\right)^a=1-\frac{a }{6}x^2+\frac{a (5 a-2)}{360} x^4-\frac{a \left(35 a^2-42 a+16\right) }{45360}x^6+O(x^8)$$ the integration is simple.
Expanded as a series
$$I(a)=\, \frac{\pi ^{a+2}}{2^{(a+12)} }\left( 512-\frac{2 \left(362880+15120 \pi ^2+84 \pi ^4+\pi ^6\right)
}{2835}a+O\left(a^2\right) \right)$$ which is not bad for
$0<a <0.05$ as show below
$$\left(
\begin{array}{ccc}
a & \text{approximation} & \text{exact value}\\
0.00 & 1.23370 & 1.23370 \\
0.01 & 1.23038 & 1.23042 \\
0.02 & 1.22701 & 1.22717 \\
0.03 & 1.22358 & 1.22395 \\
0.04 & 1.22010 & 1.22075 \\
0.05 & 1.21656 & 1.21758 \\
\end{array}
\right)$$
The next term in the expansion is
$$\frac{725760+15120 \pi ^2+896 \pi ^4+11 \pi ^6}{5670}a^2$$ which improves signifiantly
$$\left(
\begin{array}{ccc}
a & \text{approximation} & \text{exact value}\\
0.00 & 1.23370 & 1.23370 \\
0.01 & 1.23043 & 1.23042 \\
0.02 & 1.22718 & 1.22717 \\
0.03 & 1.22396 & 1.22395 \\
0.04 & 1.22077 & 1.22075 \\
0.05 & 1.21762 & 1.21758 \\
\end{array}
\right)$$
Computing the values of the required derivatives of the generalized hypergeometric function, making them rational,
$$I(a)=\frac 1{2+a} \left( \frac{\pi ^2}{4}+\frac{692 }{1203}a-\frac{32 }{645}a^2+\frac{9
}{1072}a^3+O\left(a^4\right)\right)$$ which is quite good up to $a=1$
Edit
Type in Wolfram Alpha
Rationalize[N[SeriesCoefficient[HypergeometricPFQ[{1, 1, 1 + a/2}, {3/2, 2 + a/2}, 1],{a,0,1}],20],10^(-6)]
you will obtain the $\frac{692 }{1203}$.
Update (after @metamorphy's elegant answer)
Assuming that $a$ is an integer, the recurrence relation given by @metamorphy
$$I_a=\frac{a+2}{a+1}I_{a+2}-\frac1{(a+1)(a+2)}$$ has explicit solution
$$I_{2a}=\frac{\pi ^{3/2} \Gamma \left(a+\frac{1}{2}\right)}{4 \Gamma
(a+1)}-\frac{\,
_3F_2\left(1,a+1,a+1;a+\frac{3}{2},a+2;1\right)}{2 (a+1) (2 a+1)}$$
$$I_{2a+1}=\frac{\pi ^{3/2} \Gamma (a+1)}{4 \Gamma
\left(a+\frac{3}{2}\right)}-\frac{\,
_3F_2\left(1,a+\frac{3}{2},a+\frac{3}{2};a+2,a+\frac{5}{2};1\right)}{2 (a+1) (2 a+3)}$$ For both cases, the first term is asymptotic to
$$\frac{\pi ^{3/2}}{4 \sqrt{a}}$$ as @metamorphy already showed.