Prove that $$\binom{2n}{n}\ge\dfrac{2^{2n-1}}{\sqrt{n}}$$
By the way: I have see $$\binom{2n}{n}\ge\dfrac{4^n}{2n}=\dfrac{2^{2n-1}}{n}$$
proof: Applying the binomial theorem $$4^n=(1+1)^{2n}=\sum_{k=0}^{2n}\binom{2n}{k}=2+\sum_{k=1}^{2n-1}\binom{2n}{k}\le 2n\binom{2n}{n}$$
becasuse $$\binom{2n}{k}\le\binom{2n}{n},k=0,1,2,\cdots,2n$$
But $$\dfrac{2^{2n-1}}{\sqrt{n}}\ge\dfrac{2^{2n-1}}{n}$$
so my question must use other methods? Thank you?