Prove this inequality for every $n\ge{1}$
$$\binom{2n}{n}\ge \frac{2^{2n}}{4\sqrt{n}+2} $$
I try to prove it with simplification this inequality but i don't find right path to get solution.
Prove this inequality for every $n\ge{1}$
$$\binom{2n}{n}\ge \frac{2^{2n}}{4\sqrt{n}+2} $$
I try to prove it with simplification this inequality but i don't find right path to get solution.
We begin with the product representations $${2n\choose n}{1\over 2^{2n}}={1\over 2n}\prod_{j=1}^{n-1}\left(1+{1\over 2j}\right)=\prod_{j=1}^n\left(1-{1\over2j}\right),\quad n\geq1.$$
From $$ \prod_{j=1}^{n-1}\left(1+{1\over 2j}\right)^{\!\!2}=\prod_{j=1}^{n-1}\left(1+{1\over j}+{1\over 4j^2}\right)\geq \prod_{j=1}^{n-1}\left(1+{1\over j}\right)=n,$$ we see that $$\left({2n\choose n}{1\over 2^{2n}} \right)^{2} = {1\over (2n)^2}\, \prod_{j=1}^{n-1}\left(1+{1\over 2j}\right)^{\!\!2} \geq {1\over 4n^2}\, n ={1\over 4n},\quad n\geq1.$$ so by taking square roots, ${2n\choose n}{1\over 2^{2n}}\geq \displaystyle{1\over 2\sqrt{n}}\ge \frac{1}{4\sqrt{n}+2}.$