Instead of tilting the parabola $y=x^2$ by $\pi/180$, one may also tilt vertical lines by $-\pi/180$ relative to the origin.
Vertical lines become straight lines of slope $\cot \frac\pi{180}$, and in particular the $y$-axis becomes:
$$\begin{align*}
y &= x\cot\frac\pi{180}\\
x\cot\frac\pi{180} - y &= 0
\end{align*}$$
One line in this family of tilted lines touches the parabola $y=x^2$, where the slope of the parabola matches $\cot\frac\pi{180}$:
$$\begin{align*}
\frac{dx^2}{dx} &= \cot\frac\pi{180}\\
2x &= \cot\frac\pi{180}\\
x &= \frac12\cot\frac\pi{180}\\
y &= \left(\frac12\cot\frac\pi{180}\right)^2 = \frac14\cot^2\frac\pi{180}
\end{align*}$$
The distance between the tilted $y$-axis and the above tangential point, using the distance formula, is:
$$\begin{align*}
\text{Distance} &= \operatorname{distance}\left(x\cot\frac\pi{180} - y = 0, \left(\frac12\cot\frac\pi{180}, \frac14\cot^2\frac\pi{180}\right)\right)\\
&=\frac{\frac12\cot\frac\pi{180} \cdot \cot\frac\pi{180} - \frac14\cot^2\frac\pi{180}}{\sqrt{\left(\cot\frac\pi{180}\right)^2+1^2}}\\
&= \frac{\frac14\cot^2\frac\pi{180}}{\csc\frac\pi{180}}\\
&= \frac14\cos\frac\pi{180}\cot\frac\pi{180}\\
&\approx 14.3203\ldots
\end{align*}$$
The required vertical line has the same $x$-intercept as the above distance:
$$\begin{align*}
x &= \frac14\cos\frac\pi{180}\cot\frac\pi{180}\\
x &\approx 14.3203\ldots
\end{align*}$$