If $p,q$ are a pair of twin primes, then $x = \dfrac{p+ q}{2} = q-1 = p+1$ is their twin prime average.
Conjecture. Every twin prime average $x \gt 6$ is the sum of two smaller twin prime averages, $x = x' + x''$.
This doesn't require infinitude. So wondering if we can prove it.
12 = 6 + 6
18 = 6 + 12
30 = 12 + 18
42 = 12 + 30
60 = 18 + 42
72 = 12 + 60
102 = 30 + 72
108 = 6 + 102
138 = 30 + 108
150 = 12 + 138
180 = 30 + 150
192 = 12 + 180
198 = 6 + 192
228 = 30 + 198
240 = 12 + 228
270 = 30 + 240
282 = 12 + 270
312 = 30 + 282
348 = 108 + 240
420 = 72 + 348
432 = 12 + 420
462 = 30 + 432
522 = 60 + 462
570 = 108 + 462
600 = 30 + 570
618 = 18 + 600
642 = 42 + 600
660 = 18 + 642
810 = 150 + 660
822 = 12 + 810
828 = 6 + 822
858 = 30 + 828
882 = 60 + 822
1020 = 138 + 882
1032 = 12 + 1020
1050 = 18 + 1032
1062 = 12 + 1050
1092 = 30 + 1062
1152 = 60 + 1092
1230 = 138 + 1092
1278 = 228 + 1050
1290 = 12 + 1278
1302 = 12 + 1290
1320 = 18 + 1302
1428 = 108 + 1320
1452 = 150 + 1302
1482 = 30 + 1452
1488 = 6 + 1482
1608 = 180 + 1428
1620 = 12 + 1608
1668 = 60 + 1608
1698 = 30 + 1668
1722 = 102 + 1620
1788 = 180 + 1608
1872 = 150 + 1722
1878 = 6 + 1872
1932 = 60 + 1872
1950 = 18 + 1932
1998 = 570 + 1428
2028 = 30 + 1998
2082 = 150 + 1932
2088 = 6 + 2082
2112 = 30 + 2082
2130 = 18 + 2112
2142 = 12 + 2130
2238 = 108 + 2130
2268 = 30 + 2238
2310 = 42 + 2268
2340 = 30 + 2310
2382 = 42 + 2340
2550 = 240 + 2310
2592 = 42 + 2550
2658 = 108 + 2550
2688 = 30 + 2658
2712 = 570 + 2142
2730 = 18 + 2712
2790 = 60 + 2730
2802 = 12 + 2790
2970 = 180 + 2790
3000 = 30 + 2970
3120 = 150 + 2970
3168 = 198 + 2970
3252 = 282 + 2970
3258 = 6 + 3252
3300 = 42 + 3258
3330 = 30 + 3300
3360 = 30 + 3330
3372 = 12 + 3360
3390 = 18 + 3372
3462 = 72 + 3390
3468 = 6 + 3462
3528 = 60 + 3468
3540 = 12 + 3528
3558 = 18 + 3540
3582 = 42 + 3540
3672 = 282 + 3390
3768 = 228 + 3540
3822 = 150 + 3672
3852 = 30 + 3822
3918 = 150 + 3768
3930 = 12 + 3918
4002 = 72 + 3930
4020 = 18 + 4002
4050 = 30 + 4020
4092 = 42 + 4050
4128 = 108 + 4020
4158 = 30 + 4128
4218 = 60 + 4158
4230 = 12 + 4218
4242 = 12 + 4230
4260 = 18 + 4242
4272 = 12 + 4260
4338 = 108 + 4230
4422 = 150 + 4272
4482 = 60 + 4422
4518 = 180 + 4338
4548 = 30 + 4518
4638 = 420 + 4218
4650 = 12 + 4638
4722 = 72 + 4650
4788 = 138 + 4650
4800 = 12 + 4788
4932 = 282 + 4650
4968 = 180 + 4788
5010 = 42 + 4968
5022 = 12 + 5010
5100 = 312 + 4788
5232 = 432 + 4800
5280 = 180 + 5100
5418 = 138 + 5280
5442 = 420 + 5022
5478 = 60 + 5418
5502 = 60 + 5442
5520 = 18 + 5502
5640 = 138 + 5502
5652 = 12 + 5640
5658 = 6 + 5652
5742 = 102 + 5640
5850 = 108 + 5742
5868 = 18 + 5850
5880 = 12 + 5868
6090 = 240 + 5850
6132 = 42 + 6090
6198 = 108 + 6090
6270 = 72 + 6198
6300 = 30 + 6270
6360 = 60 + 6300
6450 = 150 + 6300
6552 = 102 + 6450
6570 = 18 + 6552
6660 = 108 + 6552
6690 = 30 + 6660
6702 = 12 + 6690
6762 = 60 + 6702
6780 = 18 + 6762
6792 = 12 + 6780
6828 = 138 + 6690
6870 = 42 + 6828
6948 = 858 + 6090
6960 = 12 + 6948
7128 = 180 + 6948
7212 = 420 + 6792
7308 = 180 + 7128
7332 = 462 + 6870
7350 = 18 + 7332
7458 = 108 + 7350
7488 = 30 + 7458
7548 = 60 + 7488
7560 = 12 + 7548
7590 = 30 + 7560
7758 = 198 + 7560
7878 = 420 + 7458
7950 = 72 + 7878
8010 = 60 + 7950
8088 = 138 + 7950
8220 = 270 + 7950
8232 = 12 + 8220
8292 = 60 + 8232
8388 = 828 + 7560
8430 = 42 + 8388
8538 = 108 + 8430
8598 = 60 + 8538
8628 = 30 + 8598
8820 = 192 + 8628
8838 = 18 + 8820
8862 = 42 + 8820
8970 = 108 + 8862
9000 = 30 + 8970
9012 = 12 + 9000
9042 = 30 + 9012
9240 = 198 + 9042
9282 = 42 + 9240
9342 = 60 + 9282
9420 = 138 + 9282
9432 = 12 + 9420
9438 = 6 + 9432
9462 = 30 + 9432
9630 = 192 + 9438
9678 = 240 + 9438
9720 = 42 + 9678
9768 = 138 + 9630
9858 = 138 + 9720
9930 = 72 + 9858
How I would use this data is this. Don't try to prove this, but we can safely assume that given a complete list of twin primes $\leq x_n$ each in the list can be assumed to be the sum of two prior. I would, given such a list $X = x_0 \lt x_1 \lt \dots \lt x_n$, assume that for each $k = 1..n$ that the sublist $x_0 \lt \dots \lt x_k$ also has this summatory property. Perhaps from there we can form a contradiction if for each $x, y \in X$, we have that:
$$ (x + y)^2 - 1 = 0 \pmod q, \\ \text{ for some prime } q \leq \sqrt{x + y + 1} $$
in a Sieve-of-Eratosthenese way. We must also then note that if $y = \max X$, then $\sqrt{2y + 1} \leq y - 2$ for sufficiently large $y$, namely $y \geq 6$. That means that the primes involved in showing that for at least one prime $q$ we have $(x+y)^2 - 1= 0 \pmod q$ can be taken to be the same list $Q$ by which each $x \in X$ is such that $x \pm 1 \neq 0 \pmod q$ for some $q \in Q$, i.e. namely all $q \leq y - 2$.