Below we show how to reduce it to the well-known CRT solvability condition, and that it has a very intuitive natural interpretation in terms of modular fraction equivalence. Our system is
$$\begin{align} &\color{#90f}3x \equiv a\!\!\pmod{28}\\
&\color{#0a0}{\color{#c00}ax} \color{#0a0}{\equiv 4\!\!\pmod{\color{#c00}{21}}} \end{align}\qquad$$
Recall if $\,\color{#0a0}{\color{#c00}a\:\!x+\color{#c00}{21}\:\!y = 4}\,$ is solvable then $\,\color{#c00}{g := (a,21)}\mid \color{#0a0}4\,$ so $\,g\mid 21,4\Rightarrow \color{#c00}{g=1}.\,$ So by Theorem below the system is solvable $\!\iff\!\bmod 7\!:\ a\color{#c00}a\equiv \color{#90f}3\cdot\color{#0a0} 4\equiv -2\,\overset{\rm cube}\Rightarrow a^{\large 6}\equiv -1,\,$ contra lil Fermat.
Theorem $\ $ If $\,(a,m) = \color{#c00}{1 = (c,n)}\,$ then
$$\exists\, x\!:\ \begin{align}
&\color{#90f}ax\equiv b\!\!\pmod{\!m}\\
&\:\!\color{#0a0}{\color{#c00}cx}\color{#0a0}{\equiv d\!\!\pmod{\!\color{#c00}n}}\end{align}
\iff \color{#90f}a\color{#0a0}d\equiv b\color{#c00}c\!\!\pmod{(m,n)}\qquad$$
Proof $\ $ By hypotheses and Bezout: $\,a^{-1}$ exists mod $m\,$ and $\,c^{-1}$ exists mod $n,\,$ so
$$\exists\, x\!:\ \begin{align} ax&\equiv b\!\!\pmod{\!m}\\cx&\equiv d\!\!\pmod{\!n}\end{align}\iff \exists\, x\!:\!\!\!\!\!\begin{array}{} &x\equiv b/a\,\pmod{\!m}\\&x\equiv d/c\: \pmod{\!n}\end{array}\quad$$
By the well-known CRT solvability criterion the prior system is solvable iff
$$\bmod (m,n)\!:\,\ b/a\equiv x \equiv d/c\!\!\overset{\times\ ac\!}\iff bc\equiv ad$$
where we used $\,(a,(m,n)) = 1 = (c,(m,n))\, $ by $(a,m) = 1 = (c,n),\,$ therefore scaling by the units (invertibles) $\,a,c\,$ yields an equivalent congruence $\bmod (m,n)$.
Remark $ $ This solvability criterion is much more intuitive in fractional language, where it becomes the modular version of the cross-multiplication test for modular fraction equivalence, i.e.
$$\exists\, x\!:\ \begin{align} x&\equiv \frac{b}a\!\!\pmod{\!m}\\[.2em]x&\equiv \frac{d}c\!\!\pmod{\!n}\end{align}\!\iff \frac{b}a\equiv \frac{d}c\!\! \pmod{\!(m,n)}\qquad$$
This is a natural fractional extension of the said CRT solvability criterion (it is a version of CRT in the ring of fractions writable with denominator coprime to to both $m$ and $n$, a fundamental construction whose properties are developed at length when one studies commutative algebra).