$\def\sF{\mathcal{F}}
\def\sO{\mathcal{O}}
\def\bbZ{\mathbb{Z}}
\def\sh{\mathsf{Sh}}
\def\ab{\mathsf{Ab}}
\def\supp{\operatorname{supp}}
\def\sB{\mathcal{B}}
$Let $(X,\sO_X)$ be a ringed space and let $\sF$ be a sheaf of $\sO_X$-modules such that the étale space $|\sF|$ is Hausdorff, and let $s\in\sF(U)$ be a section over an open subset $U\subset X$. We are going to show that $\supp s\subset X$ is open (you can verify that if $\sO_X=\underline{\bbZ}$ is the $\bbZ$-constant sheaf on $X$, then the forgetful functor $\sh_{\underline{\bbZ}}(X)\to\sh_{\ab}(X)$ from sheaves of $\underline{\bbZ}$-modules to sheaves of abelian groups is an isomorphism of categories and, hence, your situation is a particular example of the general case. See e.g. this or this).
For any section $t\in\sF(V)$, denote
\begin{align*}
\dot{t}:V&\to|\sF|\\
x&\mapsto t_x
\end{align*}
to the induced continuous section.
Let $x\in\supp s$. Then $s_x\neq 0$. Pick a neighborhood system $\sB$ of $U$ at $x$. Then $\dot{s}(\sB)=\{\dot{s}(B)\mid B\in\sB\}$ and $\dot{0}(\sB)$ are neighborhood systems of $|\sF|$ at $s_x$ and at $0_x$, respectively. Since $|\sF|$ is Hausdorff, there are $B,C\in\sB$ with $\varnothing=\dot{s}(B)\cap\dot{0}(C)=\dot{s}(B\cap C)\cap\dot{0}(B\cap C)$. In particular, $s_y\neq 0_y$ for all $y\in B\cap C$. Thus, $x\in B\cap C\subset\supp s$.