If $a_1=1, a_n=a_{n-1}+\frac1{a_{n-1}}$ if $n\gt1$ then $a_{100}$ lies in the interval
- A) $(14,18)$
- B) $(13,20)$
- C) $(14,20)$
- D) $(20,26)$
(The answer given is ABC)
My Attempt:
$a_2=2, a_3=\frac52, a_4=\frac52+\frac25=\frac{29}{10}$
So, the sequence is $\frac{10}{10},\frac{20}{10}, \frac{25}{10}, \frac{29}{10}, ...$
In the numerators, the differences are $10,5,4$
Not sure what to make of it ...
EDIT:
@A.P. suggested change of variable $x_n=a_n^2$, so, $$a_n^2=a_{n-1}^2+\frac1{a_{n-1}^2}+2\\\implies x_n=x_{n-1}+\frac1{x_{n-1}}+2\\\implies x_n-2=x_{n-1}+\frac1{x_{n-1}}\\\implies x_n^2-4x_n+4=x_{n-1}^2+\frac1{x_{n-1}^2}$$
Do I need to change $x_n^2$ to $y_n$?
EDIT2: From this post, I understand that $$a_{n-1}^2+2<a_n^2\leq a_{n-1}^2+3\,.$$ But from this, how do we write the following? $$2n-1\leq a_n^2\leq 3n-2$$