Let $T$ be a linear operator on $F^2$. Prove that any non-zero vector which is not a characteristic vector for $T$ is a cyclic vector for $T$. Hence, prove that either $T$ has a cyclic vector or $T$ is a scalar multiple of the identity operator.
My attempt: let $\alpha \in F^2\setminus \{0\}$ and $\alpha$ is not eigenvector of $T$. By example 1 section 7.1, $\dim Z(\alpha;T)\neq 1$. Since $\alpha \in Z(\alpha; T)$, we have $Z(\alpha;T)\neq 0$. So $\dim Z(\alpha;T)\neq 0$. Thus $\dim Z(\alpha;T)=2$. Hence $Z(\alpha ;T)=F^2$.
If $\exists \alpha\in F^2\setminus \{0\}$ such that $\alpha$ is not eigenvector of $T$, then $T$ has a cyclic vector, namely $\alpha$. Suppose $\alpha$ is eigenvector of $T$, $\forall \alpha \in F^2\setminus \{0\}$. Then $T(\alpha)=c_{\alpha}\cdot \alpha$, for all $\alpha \in F^2\setminus \{0\}$. Let $\alpha ,\beta \in F^2\setminus \{0\}$. Case (1): $\{\alpha ,\beta\}$ is independent. Then $T(\alpha +\beta)=c_{\alpha +\beta}\cdot (\alpha +\beta)=c_{\alpha +\beta}\cdot \alpha +c_{\alpha+\beta}\cdot \beta=c_\alpha \cdot \alpha +c_\beta \cdot \beta$. So $c_\alpha=c_\beta=c_{\alpha +\beta}$. Case (2): $\{\alpha ,\beta\}$ is dependent, i.e. $\alpha =c\cdot \beta$, for some $c\in F$. Then $T(\alpha)=c\cdot (c_\beta \cdot \beta)=c_\beta \cdot (c\cdot \beta)=c_\beta \cdot \alpha=c_\alpha \cdot \alpha$. So $c_\alpha =c_\beta$. Thus $c_\alpha =c_\beta$, $\forall \alpha,\beta \in F^2\setminus \{0\}$. Hence $T$ is scalar multiple of identity operator. Is my proof correct?
See if this question helps: If $T$ does not have a cyclic vector, then what is the dimension of $Z(\alpha, T)$ for non-zero $\alpha\in V$?
– C Squared Feb 07 '23 at 21:45