Definition: If $\alpha \in V$, the $T$-cyclic subspace generated by $\alpha$ is the subspace $Z(\alpha; T)=\{g(T)(\alpha)\mid g\in F[x]\}$. If $Z(\alpha; T)=V$, then $\alpha$ is called a cyclic vector for $T$.
The space $Z(\alpha; T)$ is one-dimensional if and only if $\alpha$ is a characteristic vector for $T$.
My attempt: It’s easy to check $Z(\alpha ;T)=\text{span}(\{T^k(\alpha)\mid k\geq 0\})$. $(\Rightarrow)$ Suppose $\dim Z(\alpha;T)=1$. Then $\exists \beta\in V$ such that $\text{span}(\beta)= \text{span}(\{T^k(\alpha)\mid k\geq 0\}) $. So $\alpha =c\cdot \beta$ and $T(\alpha)=d\cdot \beta$. Since $\alpha \neq 0$, we have $c\neq 0$. So $\exists c^{-1}\in F$ such that $cc^{-1}=c^{-1}c=1$. Thus $\beta =c^{-1}\cdot \alpha$ and $T(\alpha)=d\cdot \beta=(dc^{-1})\cdot \alpha$. Hence $\alpha$ is eigenvector of $T$.
$(\Leftarrow)$ Suppose $\alpha$ is eigenvector of $T$. Then $\exists c\in F$ such that $T(\alpha)=c\cdot \alpha$. So $T^k(\alpha)=c^k\cdot \alpha$, $\forall k\geq 0$. Thus $$Z(\alpha;T)=\text{span}(\{T^k(\alpha)\mid k\geq 0\})=\text{span}(\{c^k\cdot \alpha\mid k\geq 0\})=\text{span}(\alpha).$$ Since $\alpha \neq 0$, we have $\{\alpha\}$ is independent. So $\{\alpha\}$ is basis of $Z(\alpha ;T)$. Hence $\dim Z(\alpha ;T)=1$. Is my proof correct?