1

I'm something of a hobbyist here, and would like to find a function that takes the natural log $e$ number of times so that I can define a new series of functions recursively, where $$f_0 = \ln(x), \quad f_1(x) = \frac{\ln^{\circledast e}(x)}{\ln (x)}, \quad \text{etc.}$$ wherein $$\ln^{\circledast e} \text{ or } \ln^{\circledast \text{number}}$$ is equivalent to \begin{equation*} \underbrace{\ln (\ln (\ln (\cdots)))}_{e} \text{ or } \underbrace{\ln (\ln (\ln (\cdots)))}_{\text{number}}. \end{equation*}

0 Answers0