Is known, that
$$(1+a)^{-b}=\sum\limits_{j=0}^\infty \dbinom{-b}{j}a^j,$$
$$(1+a)^{-b}=1-ba\left(1-(b+1)\dfrac a2\,\left(1-(b+2)\dfrac a3\,\left(1-\dots (b+k)\dfrac a{k+1}\dots\right)\right)\right).$$
At the same time,
$$\int\limits_1^2 x^{-x}\,\text dx = \int\limits_1^{\large\frac32} x^{-x}\,\text dx +\int\limits_{\large\frac32}^2 x^{-x}\,\text dx.$$
If $\color{brown}{\mathbf {x\in\left[1,\frac32\right]}},$ then
$\qquad x=\dfrac54\left(1+\dfrac y5\right)=\dfrac54+\dfrac{y}4,\quad$ where $y\in[-1,1].$
Therefore,
$$x^{-x} = \left(\dfrac54\right)^{\Large-\frac{y+5}4}\left(1+\dfrac y5\right)^{\large-\frac54}\left(1+\dfrac y5\right)^{\Large-\frac{y}4},$$
wherein
$$\left(1+\dfrac y5\right)^{\Large -\frac {y}4}\approx P_{16}(y)=
1-\dfrac{y^2}{20}\bigg(1-\dfrac{y^2+4y}{40}\,\bigg(1-\dfrac{y^2+8y}{60}\,
\bigg(1-\dfrac{y^2+12y}{80}\,$$
$$\times\left(1-\dfrac{y^2+16y}{100}\,\left(1-\dfrac{y^2+20y}{120}\,\left(1-\dfrac{y^2+24y}{140}\,\left(1-\dfrac{y^2+28y}{160}\,\right)\right)\right)\right)\bigg)\bigg)\bigg)$$
Let $y=5z-5,$ then
$x=\dfrac54 z,\quad$ and
$$I_1=\int\limits_1^{\large\frac32} x^{-x}\,\text dx\approx \int\limits_{\large\frac45}^{\large\frac65}\left(\dfrac54\right)^{\large-\frac54\,z-1}z^{\large-\frac54} P_{16}(5z-5)\,\text dz.$$
Using of the integral
$$\int\limits_{\large\frac45}^{\large\frac65}\left(\dfrac54\right)^{\large-\frac54\,z-1}z^{k-\large\frac54}\,\text dz
=\left(\dfrac54\right)^{\large\frac54-k} E_{\large\frac54-k} \left(\ln\,\frac54\right) - 2^{\large k-\frac94} 3^{\large k-\frac14} 5^{\large\frac54-k}E_{\large\frac54-k}\left(\ln\dfrac{5\sqrt5}8\right),$$
where $E_n(x)$ is the exponential integral, leads to the result
$$I_1\approx 0.3809511001490732.$$
Numeric integration leads to the result
$$I_1\approx 0.3809510996568984.$$
If $\color{brown}{\mathbf {x\in\left[\frac32,2\right]}},$ then
$\qquad x=\dfrac74\left(1+\dfrac y7\right)=\dfrac74+\dfrac{y}4,\quad$ where $y\in[-1,1].$
Therefore,
$$x^{-x} = \left(\dfrac74\right)^{\Large-\frac{y+7}4}\left(1+\dfrac y7\right)^{\large-\frac74}\left(1+\dfrac y7\right)^{\Large-\frac{y}4},$$
wherein
$$\left(1+\dfrac y7\right)^{\Large -\frac {y}4}\approx Q_{16}(y)=
1-\dfrac{y^2}{28}\bigg(1-\dfrac{y^2+4y}{56}\,\bigg(1-\dfrac{y^2+8y}{84}\,
\bigg(1-\dfrac{y^2+12y}{112}\,$$
$$\times\left(1-\dfrac{y^2+16y}{140}\,\left(1-\dfrac{y^2+20y}{168}\,\left(1-\dfrac{y^2+24y}{196}\,\left(1-\dfrac{y^2+28y}{224}\, \right)\right)\right)\right)\bigg)\bigg)\bigg)$$
Let $y=7z-7,$ then
$x=\dfrac74 z,\quad$ and
$$I_2=\int\limits_{\large\frac32}^2 x^{-x}\,\text dx\approx \int\limits_{\large\frac67}^{\large\frac87}\left(\dfrac74\right)^{\large-\frac74\,z-1}z^{\large-\frac74} Q_{16}(7z-7)\,\text dz.$$
Using of the integral
$$\int\limits_{\large\frac67}^{\large\frac87}\left(\dfrac74\right)^{\large-\frac74\,z-1}z^{k-\large\frac74}\,\text dz
=2^{\large k-\frac{11}4} 7^{\large\frac74-k} \left(3^{\large k-\frac34} E_{\large\frac74 - k}\left(\ln\,\frac{7\sqrt7}8\right) - 2^{\large 2k-\frac32} E_{\large\frac74-k}\left(\ln\,\frac{49}{16}\right)\right)$$
leads to the result
$$I_2\approx 0.1913981347868081.$$
Numeric integration leads to the result
$$I_2\approx 0.1913981347751783.$$
This allows to get
$$I\approx 0.5723492349358814,$$
when the numeric calculations give
$$I\approx 0.5723492344320767.$$
Easily to see that the proposed method provides the arbitrary accuracy.