I put here my progress so far :
We have :
$f\left(x\right)=\frac{\left(ex^{\frac{42}{100}+\frac{12}{1000}}e^{-x^{1+\frac{42}{100}+\frac{12}{1000}}}+\left(1+e^{-1}\right)ex^{\frac{40}{100}+\frac{12}{1000}}e^{-x^{1+\frac{40}{100}+\frac{12}{1000}}}+ex^{\frac{41}{100}+\frac{12}{1000}}e^{-x^{1+\frac{41}{100}+\frac{12}{1000}}}+\left(1-e^{-1}\right)ex^{\frac{41}{100}+\frac{12}{1000}}e^{-x^{1+\frac{41}{100}+\frac{12}{1000}}}\right)}{4}$
Then it seems we have for $x\geq1$ :
$$f\left(x\right)-x^{-x}<9\cdot10^{-5}$$
With the absolute value it seems we have for $x\ge 1$ :
$$\left|g\left(x\right)-x^{-x}\right|<2\cdot10^{-4}$$
$g\left(x\right)=\frac{\left(ex^{\frac{42}{100}+\frac{12}{1000}}e^{-x^{1+\frac{42}{100}+\frac{12}{1000}}}+\left(1+e^{-1}\right)ex^{\frac{40-\frac{119}{1000}}{100}+\frac{12}{1000}}e^{-x^{1+\frac{40-\frac{119}{1000}}{100}+\frac{12}{1000}}}+\left(1-e^{-1}+1\right)ex^{\frac{41}{100}+\frac{12}{1000}}e^{-x^{1+\frac{41}{100}+\frac{12}{1000}}}\right)}{4}$
We have also for $x\in[4/3,2]$ :
$$\left|\left(\left(1-j\right)\frac{e^{d\left(1+c\right)^{a}}}{\left(1+c\right)^{\left(a-1\right)}}\left(x+c\right)^{\left(a-1\right)}e^{-d\left(x+c\right)^{a}}+jex^{0.4212}e^{-x^{1.4212}}\right)-x^{-x}\right|<4\cdot10^{-5}$$
Where :
$$d=1.44,c=-0.588,a=1.618,j=0.9986$$
Another attempt 14/01/2023 :
Let $c=0.921$,$k=3$:
$$f\left(x\right)=\frac{c}{k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k}+\frac{1}{k^{2}}\right)}e^{-x^{\left(1+\frac{1}{k}+\frac{1}{k^{2}}\right)}}+\frac{\left(1-c\right)}{3k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{2}}+\frac{1}{k^{4}}\right)}e^{-x^{\left(1+\frac{1}{k^{2}}+\frac{1}{k^{4}}\right)}}+\frac{\left(1-c\right)}{3k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{4}}+\frac{1}{k^{6}}\right)}e^{-x^{\left(1+\frac{1}{k^{4}}+\frac{1}{k^{6}}\right)}}+\frac{\left(1-c\right)}{3k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{6}}+\frac{1}{k^{8}}\right)}e^{-x^{\left(1+\frac{1}{k^{6}}+\frac{1}{k^{8}}\right)}}$$
Then we have for $x\in[1,1.2]$:
$$\left|f\left(x\right)-x^{-x}\right|<2\cdot10^{-5}$$
Edit 15/01/2023 :
We can use a sort of algorithm :
Let :
$$j\left(x\right)=\frac{c}{k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{d}}+\frac{1}{k^{2}}\right)}e^{-x^{\left(1+\frac{1}{k^{d}}+\frac{1}{k^{2}}\right)}}+\frac{\left(1-c\right)}{3k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{2r}}+\frac{1}{k^{4}}\right)}e^{-x^{\left(1+\frac{1}{k^{2r}}+\frac{1}{k^{4}}\right)}}+\frac{\left(1-c\right)}{3k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{4}}+\frac{1}{k^{6}}\right)}e^{-x^{\left(1+\frac{1}{k^{4}}+\frac{1}{k^{6}}\right)}}+\frac{\left(1-c\right)}{3k}\sum_{n=1}^{k}ex^{\left(\frac{1}{k^{6t}}+\frac{1}{k^{8}}\right)}e^{-x^{\left(1+\frac{1}{k^{6t}}+\frac{1}{k^{8}}\right)}}$$
Where :
$$t=0.56,r=1.275,d=1.15,c=1.082,k=3$$
We introduce the function :
$$F(x)=\frac{|j(x)-x^{-x}|}{x}$$
We use the tangent line method :
$$F(x)\simeq h(x)=F(2)(x-2)+F(2)$$
Or :
$$xF(x)\simeq H(x)= F(2)x(x-2)+F(2)x$$
We introduce the function :
$$F_1(x)=\frac{||n(x)-x^{-x}|-H(x)|}{x}$$
And again we use the tangent line method...It seems to converge on $(\alpha,\beta)$ where $\alpha,\beta \in (1,2)$
Some details :
$$F\left(x\right)=\frac{\left|j(x)-x^{-x}\right|}{x}$$
$$a_{1}\left(x\right)=\frac{\left|F\left(x\right)-F\left(2\right)x\left(x-2\right)-xF\left(2\right)\right|}{x}$$
$$a_{2}\left(x\right)=a_{1}\left(2\right)\left(x-2\right)+a_{1}\left(2\right)$$
$$a_{3}\left(x\right)=\frac{\left|a_{1}\left(x\right)-xa_{2}\left(x\right)\right|}{x},a_{4}\left(x\right)=a_{3}\left(2\right)\left(x-2\right)+a_{3}\left(2\right),a_{4}\left(x\right)=a_{3}\left(2\right)\left(x-2\right)+a_{3}\left(2\right),a_{5}\left(x\right)=\frac{\left|a_{3}\left(x\right)-xa_{4}\left(x\right)\right|}{x}$$
And so on
The accuracy growths by power of two .