Let $a_0=9$ and consider the following recurrence relation: $$a_n=36(n+1)2^{n-2}+2a_{n-1},$$ I'm looking for the closed form of $\{a_n\}.$
I have tried using generator functions: \begin{align*} f(x)&=\sum_{n=0}^\infty a_nx^n\\ &=9 +\sum_{n=1}^\infty \left(4.5(n+1)2^{n+1}+2a_{n-1}\right)x^n\\ &=9 +4.5\sum_{n=1}^\infty (n+1)2^{n+1}x^n+2\sum_{n=1}^\infty a_{n-1}x^n\\ &=9 +\frac{4.5}{x}\sum_{n=1}^\infty (n+1)2^{n+1}x^{n+1} + 2x\sum_{n=1}^\infty a_{n-1}x^{n-1}\\ &=9 +\frac{4.5}{x}\sum_{n=2}^\infty n2^{n}x^{n} + 2xf(x) \end{align*} What should I do next? Is there a quicker way to solve this?
Thanks in advance