For the integral $\displaystyle \int\sin^n(x) dx$ there exists the following reduction formula, that is a recurrence relation:
$\displaystyle I_n = \frac{n-1}{n} \cdot I_{n-2}-\frac{\sin^{n-1}(x) \cdot\cos(x)}{n}$
I have now been trying to solve this recurrence relation and was able to find a solution for the homogeneous problem:
$I_n = \frac{n-1}{n} \cdot I_{n-2}$
I arrived at the following:
$\displaystyle I_n=\frac{\displaystyle \prod_{i=1}^{\frac{n}{2}} (2i-1)}{\displaystyle \prod_{i=1}^{\frac{n}{2}} 2i} \cdot C_1$, if $n$ is even
and
$\displaystyle I_n=\frac{\displaystyle \prod_{i=1}^{\frac{n-1}{2}} 2i}{\displaystyle \prod_{i=1}^{\frac{n-1}{2}} (2i+1)} \cdot C_2$, if $n$ is odd
which I then simplified further using some identities for products:
$\displaystyle I_n=\frac{n!}{2^n \cdot \left( \left(\displaystyle \frac{n}{2} \right)! \right)^2} \cdot C_1$, if $n$ is even
and
$\displaystyle I_n=\frac{2^{n-1} \cdot \left( \left(\displaystyle \frac{n-1}{2} \right)! \right)^2}{n!} \cdot C_2$, if $n$ is odd
which combined results in:
$I_n=\displaystyle \frac{(-1)^n+1}{2} \cdot \displaystyle \frac{n!}{2^n \cdot \left( \left(\displaystyle \frac{n}{2} \right)! \right)^2} \cdot C_1 + \displaystyle \frac{(-1)^{n+1}+1}{2} \cdot \frac{2^{n-1} \cdot \left( \left(\displaystyle \frac{n-1}{2} \right)! \right)^2}{n!} \cdot C_2$
But now I'm struggling with finding a particular solution to the non-homogeneous problem:
$\displaystyle I_n = \frac{n-1}{n} \cdot I_{n-2}-\frac{\sin^{n-1}(x) \cdot\cos(x)}{n}$
So solving for $I_0$ yields $x$ which results in:
$\displaystyle I_{2n}=\frac{(2n)!}{4^n \cdot(n!)^2} \cdot \left(x-\frac{cos(x)}{2} \cdot \sum_{k=1}^{n} \frac{sin^{2k-1}(x) \cdot 4^k \cdot (k!)^2}{k \cdot (2k)!} \right)$
And solving for $I_1$ yields $-cos(x)$ which results in:
$\displaystyle I_{2n+1}=-\frac{4^n \cdot (n!)^2}{(2n+1)!} \cdot cos(x) \cdot \sum_{k=0}^{n}\frac{sin^{2k}(x) \cdot (2k)!}{4^k \cdot (k!)^2}$
I don't know if this can be simplified any further.
– elson1608 Jan 03 '23 at 23:53