$\newcommand\Mat{\rm Mat}$
The set
$$ S:=\left\{\begin{bmatrix}
\alpha & \beta\\0 & 1
\end{bmatrix}\;:\;\alpha,\beta\in\mathbb R\right\}
$$
is an affine subspace of the affine space $\Mat(2;\mathbb R)\;$ (with itself, considered as vector space, as the space of translations).
Indeed
$$ \begin{bmatrix}\alpha & \beta\\0 & 1\end{bmatrix}
-\begin{bmatrix}\alpha' & \beta'\\0 & 1\end{bmatrix} = \begin{bmatrix}\alpha-\alpha' & \beta-\beta'\\0 & 0\end{bmatrix} $$
and the matrix on the right-hand side describes the vector subspace
$$ \vec F = \left\{\begin{bmatrix}r & s\\0 & 0\end{bmatrix}\;:\;r,s\in\mathbb R \right\} $$
of $\Mat(2;\mathbb R)$. Therefore the set $S$ lies in the plane
$$ F = \begin{bmatrix}a & b\\0 & 1\end{bmatrix} + \vec F $$
of the affine space $\Mat(2;\mathbb R)$.
Now,
$$ \begin{bmatrix}a^n & b\frac{a^n-1}{a-1}\\0 & 1\end{bmatrix}-\begin{bmatrix} a & b\\0 & 1\end{bmatrix} = (a^n-a)\begin{bmatrix}1 & \frac b{a-1}\\0 & 0\end{bmatrix} \tag{*}$$
so
$$ \begin{bmatrix}a & b\\0 & 1\end{bmatrix}^n\in \begin{bmatrix}a &b\\0 & 1\end{bmatrix}+\pmb\langle\begin{bmatrix}1 & \frac{b}{a-1}\\0 & 0\end{bmatrix}\pmb\rangle, $$
a line $L$ contained in $F\subseteq\Mat(2;\mathbb R)$, and therefore, by affine isomorphism, contained in $\mathbb R^4.\quad$QED
Cartesian equations of $\,\mathbf L$$\quad$ Let $X_{11},\ldots,X_{22}$ be affine coordinates on $\Mat(2;\mathbb R)$ with origin $O=\begin{bmatrix}a & b\\0 & 1\end{bmatrix}$ and canonical vectors $E_{ij}$ ($i,j=1,2$). The $({}^*)$ immediately gives
$$ X_{11} = a^n-a\qquad X_{12} = (a^n-a)\frac{b}{a-1}\qquad X_{21} = 0\qquad X_{22} = 0$$
thus the system of equations of the line $L\,$ is
\begin{cases} X_{12}=\frac{b}{a-1}X_{11}\\[1.5ex]
X_{21}=0\\[1.5ex]
X_{22}=0.
\end{cases}