I want to prove the product of even/odd power with a combinatorial number: \begin{aligned} \sum_{i=1}^n i \binom{2n}{n-i}&=\frac12(n+1) \binom{2n}{n-1}, \\ \sum_{i=1}^n i^2 \binom{2n}{n-i}&=2^{2n-2} n. \end{aligned} I am sure these results are correct since WolframAlpha verifies them. I wonder if the first formula can be proved, and also the general version can be proved: Formula related to combinatorial number.
Below is proof for the second formula:
First, note that $r\binom{n}{r}=n\binom{n-1}{r-1}$, and $\sum_{i=0}^n\binom{n}{i}=2^n$. We thus have \begin{aligned} \sum_{i=0}^n i\binom{n}{i}&=2^{n-1}n, \\ \sum_{i=0}^n i^2\binom{n}{i} &= \sum_{i=0}^n i(i-1)\binom{n}{i}+\sum_{i=0}^n i\binom{n}{i} \\ &= 2^{n-2}(n^2-n) + 2^{n-1} n \\ &= n(n+1)2^{n-2}. \end{aligned} Therefore, \begin{aligned} \sum_{i=0}^{2n}(n-i)^2\binom{2n}{i} &= n^2\sum_{i=0}^{2n}\binom{2n}{i}-2n\sum_{i=0}^{2n}i\binom{2n}{i}+\sum_{i=0}^{2n}i^2 \binom{2n}{i} \\ &= 2^{2n}n^2-2^{2n+1}n^2+n(2n+1)2^{2n-1} \\ &= 2^{2n-1} n, \end{aligned} and thus \begin{aligned} \sum_{i=0}^n i^2 \binom{2n}{n-i} = \sum_{i=0}^n (n-i)^2 \binom{2n}{i} = \frac12 \sum_{i=0}^{2n} (n-i)^2 \binom{2n}{i} = 2^{2n-2} n. \end{aligned}