I got the following result from WolframAlpha. For positive integer $k$, $$\sum_{i=1}^n i^{2k} C_{2n}^{n-i} = 2^{2n-k-1}\left((2k-1)!!n^k+o(n^k)\right),$$ $$\sum_{i=1}^n i^{2k-1} C_{2n}^{n-i} = \frac12 C_{2n}^{n-1}\left((k-1)!n^k+o(n^k)\right),$$ as $n \to\infty$.
I try for $k=1,\dots,10$, and it is correct. I'm wondering if there is proof of this.
Update: See the proof for $k=1$ in prove a binomial identity for both formulas.