2

The goat problem has the following transcendental equation:

$$\sin(a)-a\cos(a)=\frac\pi2,a=1.905695729\dots$$

If $f^{-1}(x)$ is odd, its Fourier sine series of period $\left[-\frac L2,\frac L2\right]$ is: $$f^{-1}(x)=\frac2L\sum_{n=1}^\infty\sin(nx)\int_0^L f^{-1}(t)\sin\left(\frac{\pi nt}L\right)dt\mathop=^{f^{-1}(t)\to t}\frac2L\sum_{n=1}^\infty\sin(nx)\int_{f^{-1 }(0)}^{f^{-1}(L)}t\sin\left(\frac\pi Lf(t)n\right)df(t)$$

We use it to invert $\sin(x)-x\cos(x)$:

enter image description here

Therefore $x=\frac\pi2$ and:

$$\boxed{a=\frac2\pi\sum_{n=1}^\infty\sin\left(\frac{\pi n}2\right)\int_0^\pi t^2\sin(t)\sin(n(\sin(t)-t\cos(t)))dt}$$

We likely do not switch the sum and integral, but we use the sine difference formula for the integral:

$$\int_0^\pi t^2\sin(t)\sin(n(\sin(t)-t\cos(t)))dt=\int_0^\pi t^2\sin(t)(\cos(nt\cos(t))\sin(n\sin(t))-\cos(n\sin(t))\sin(nt\cos(t))dt$$

Which is reminiscent of Bessel, or Glasser for fun, function integral representations. Now we may expand $\sin(y)$ as a series if really needed. Is there any non-integral form of $\displaystyle\int_0^\pi t^2\sin(t)\sin(n(\sin(t)-t\cos(t)))dt$?

Тyma Gaidash
  • 12,081
  • An easier integral would expand the sine of the inverse function making the integral have $t$ or $t^0$, instead of $t^2$. – Тyma Gaidash Apr 08 '23 at 17:27

0 Answers0