3

Let $f_n(x) = \frac{\sin nx}{n}$ and $f(x) = \lim_{n \to \infty} f_n(x)$. Therefore, for all fixed $x$, $f(x) = 0$

The derivatives are then (for all fixed $x$): $f_n'(x) = \cos nx$ and $f'(x) = 0$.

I understand that numerically $\lim_{n \to \infty} f_n'(0) = 1 \ne 0 = f'(0)$, but I don't know how to understand that intuitively.

I guess the simplest thing to say is that information about $n$ is lost in $f(x)$, so it cannot cancel out in the derivative, like it did in the $f_n'(x)$. Or even simpler, to just say that the two are simply two different functions. I'm looking forward to get a better explanation.


Clarification, after seeing Jyrki's answer: $f_n'(0)=1$ always. If $f_n$ for higher $n$ becomes flatter at 0, why is $f_n'(0)$ also not approaching $0$ as $n \to \infty$? If $f_n(0)$ does not become flat with higher $n$s (e.g. but it just oscillates with a higher frequency), then why is $f'(0)$ also not different from $0$?

S11n
  • 898

2 Answers2

6

I don't have a copy of Apostol at hand, but I guess he is using this as an example of the general fact that we are not always allowed to change the order of two limit processes. Here $D$ and $n\to\infty$ in $$D(\lim_{n\to\infty} f_n(x))=\lim_{n\to\infty} D(f_n(x)).\qquad(*)$$ I'm sure Apostol explains somewhere that a suitable extra condition (like the sequence of derivatives $f_n'(x)$ converging uniformly) does allow the change of the order here.


For a bit of extra we can look at the situation at $x=0$ specifically by plotting a few of the functions from the sequence. enter image description here

In the image you see the graphs of $f_1,f_3,f_5$ and $f_7$. You see that near $x=0$ they have nearly identical slopes. That's exactly because $f_n'(0)=1$ for all $n$. But you also see that the graphs follow this tangent line for shorter and shorter intervals before they begin to oscillate.


You may also consider the following. Let's look at the sequence of functions $$f_n(x)=\frac1n\sin(nx+\alpha_n),$$ where $\alpha_n$ is a random phase shift. We still have $f_n\to 0$ uniformly. Only this time $f'_n(x)=\cos(nx+\alpha_n)$ need not even converge to anything anywhere (not at any $x$).

Or even $$f_n(x)=\frac1n\sin(n^2x).$$ We still have $f_n\to0$ uniformly (the factor $1/n$ is decisive). This time $$f'_n(x)=n\cos(n^2x),$$ and $f'_n(0)\to\infty$ as $n\to\infty$. See below for the sample plots $f_1,f_3,f_5,f_7,f_9$ from this sequence. Observe that as $n\to\infty$ the derivatives at zero $\to\infty$, the sine waves become steeper and steeper.

enter image description here

The point (if any) is that in general uniform convergence of a sequence itself does not say anything about the convergence of the derivatives. The power series form a notable exception, and in the case of power series we are always guaranteed that the sequence of derivatives also converges uniformly (on any compact interval contained in the interval of convergence). As we saw, a sequence of wildly oscillating ($\Rightarrow$ larger and larger derivatives) functions can converge to zero uniformly.

A sine wave can be as steep as we desire without the amplitude going up, simply increase the frequency. The amplitudes tending to zero gives uniform convergence of the functions, and this is unrelated to how steep the waves become because the frequency can (over)compensate.


The general problem requiring adjustments in one's intuition really is about mixing two limit processes. This may become clearer if, instead of $D$ we think of the derivative as the limit of a sequence. Like $$ f'(x)=\lim_{m\to\infty}\frac{f(x+\frac1m)-f(x)}{1/m},\qquad(**) $$ something that holds when $f$ is differentiable at $x$. Rewritten like this the question is whether $$ \lim_{n\to\infty}\left(\lim_{m\to\infty}\frac{f_n(x+\frac1m)-f_n(x)}{1/m}\right)\stackrel{?}{=}\lim_{m\to\infty}\left(\lim_{n\to\infty}\frac{f_n(x+\frac1m)-f_n(x)}{1/m}\right). $$ Superficially it looks like it could hold more generally, but you have encountered similar problems earlier. Compare with something from a first course on limits of sequences of numbers: $$ \lim_{n\to\infty}\lim_{m\to\infty}(1+\frac1m)^n=\lim_{n\to\infty}1^n=1, $$ but $$ \lim_{m\to\infty}\lim_{n\to\infty}(1+\frac1m)^n=\lim_{m\to\infty}\infty=\infty, $$ and $$ \lim_{n\to\infty}(1+\frac1n)^n=e. $$

Combinations of limit processes are nuanced. Among other things the order in which the limits are taken may play a role.

After this excursion one begins to appreciate "obvious" results like:

Theorem. If the limits $\lim_{n\to\infty}a_n=A$ and $\lim_{n\to\infty}b_n=B$ with both $A$ and $B$ real numbers (so finite) exist, then $$ \lim_{n\to\infty}\lim_{m\to\infty} a_nb_m= \lim_{m\to\infty}\lim_{a\to\infty} a_nb_m= \lim_{n\to\infty}a_nb_n=AB. $$

The content of this theorem being that under these circumstances we actually can do the limits of $(a_n)$ and $(b_n)$ separately, and in any which order we prefer.

Jyrki Lahtonen
  • 133,153
  • 1
    Thank you! Yes, my doubt is exactly because $f_n'(0) = 1$ always, even though $f_n$ for higher $n$ becomes flatter. Even if it does not become flat, but it just oscilates with a higher frequency, then $f'$ should also not be $0$ at $0$. Instead of searching for an existing answer, I would appreciate if you could expand on that part of the answer while you're already here :) – S11n Nov 25 '22 at 08:48
  • Thanks! It looks $f_n(x) = \frac{\sin nx}{n}$ frequency does not grow fast enough for the slope to grow at $0$ (unlike $g_n(x) = \frac{\sin n^2x}{n}$), but still I don't completely grasp why $f'(0) = 0$, even though the function $f_n$ grows at 0, even as $n \to \infty$ (or conversely, why does not $f_n'(0) \to 0$ as $n \to \infty$, given the behavior of $f'(0)$). I understand in general that does not hold (which is the first part of your answer), but I'm trying to get intuition for this concrete example...I will accept your answer, but still hope someone will give a more precise answer. – S11n Nov 28 '22 at 08:40
  • 1
    @S11n I don't know what is still missing. The derivative of a function at a single point does not mean much in the grand scheme of things. Consider shrinking upper halfcircles of radius $1/n$ with center at $(1/n,0)$. They all have infinite slope at the origin. Yet they (as graphs of functions) $\to 0$. Uniformly. – Jyrki Lahtonen Dec 01 '22 at 21:33
  • Thanks! With your final addition, I think I'm convinced now I should not expect in general that $f'$ and $f_n'$ behave similarly, so I consider this question completely closed now. Thanks! – S11n Dec 02 '22 at 12:04
0

I think $f_n = \frac{sin (nx)}n$ is not uniformly convergent. So $\lim_{n \to \infty} \frac{d}{dx}f_n(x) \neq \frac{d}{dx} \lim_{n \to \infty}f_n(x)$.

  • I think you are right saying what I commented is not right. Now that I try to imagine it, cos(nx) does not converge to a point at any x as n goes to infinity. f(x) is by definition of limiting function is zero, hence $f’(x)=0$. Two different functions $f’(x) $and cos(nx) as n goes to infinity. Thanks for making me think about this. Helped me a lot, if my thinking is still wrong, please let me know. – Vinay Mahesh Nov 26 '22 at 10:26
  • 1
    It is uniformly convergent, since $|f_n|_{\infty}\leqslant \frac{1}{n}$. Uniform convergence does not tell anything about the behaviour of the derivative. – Didier Nov 28 '22 at 09:24