So, I was stuck with this induction problem i.e
Show that P(n) : $\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$ for all integers n > 1
I tried doing the following and reached the answer but do not know if it is correct. Would appreciate input.
Basic Step: P(2) is true.
Inductive Step: For some k, P(k) is true.......
$\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$
P{k+1): is as follows:
We can show that $\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1} > \frac{4^n}{n+2}$
and
$\frac{(2(k+1)!}{((k+1)!)^2} =\frac{(2k+1)(2k+2)}{(k+1)^2}.\frac{(2k)!}{(k!)^2} > \frac{(2k+1)(2k+2)}{(k+1)^2}.\frac{4^k}{(k+2)}$
Now, for all integers $k > 0, 2k + 1 > 2k and 2k + 2 > 2k.$ Hence, we can replace this in the above formula
$\frac{(2(k+1)!}{((k+1)!)^2} > \frac{(2k)(2k)4^k}{(k+1)^2(k+2)}$
or
$\frac{(2(k+1)!}{((k+1)!)^2} > \frac{k^2 4.4^k}{(k+1)^2(k+2)}$
Now, since $k + 1 > k$, we have
$\frac{k^2}{(k+1)^2} < 1$
Hence, we replace and complete the proof:
$\frac{(2(k+1)!}{((k+1)!)^2} > \frac{4.4^k}{k+2}$