0

So, I was stuck with this induction problem i.e

Show that P(n) : $\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$ for all integers n > 1

I tried doing the following and reached the answer but do not know if it is correct. Would appreciate input.

Basic Step: P(2) is true.

Inductive Step: For some k, P(k) is true.......

$\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$

P{k+1): is as follows:

We can show that $\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1} > \frac{4^n}{n+2}$

and

$\frac{(2(k+1)!}{((k+1)!)^2} =\frac{(2k+1)(2k+2)}{(k+1)^2}.\frac{(2k)!}{(k!)^2} > \frac{(2k+1)(2k+2)}{(k+1)^2}.\frac{4^k}{(k+2)}$

Now, for all integers $k > 0, 2k + 1 > 2k and 2k + 2 > 2k.$ Hence, we can replace this in the above formula

$\frac{(2(k+1)!}{((k+1)!)^2} > \frac{(2k)(2k)4^k}{(k+1)^2(k+2)}$

or

$\frac{(2(k+1)!}{((k+1)!)^2} > \frac{k^2 4.4^k}{(k+1)^2(k+2)}$

Now, since $k + 1 > k$, we have

$\frac{k^2}{(k+1)^2} < 1$

Hence, we replace and complete the proof:

$\frac{(2(k+1)!}{((k+1)!)^2} > \frac{4.4^k}{k+2}$

0 Answers0