As already shown above I need to prove that $$\frac {4^n}{n+1} \lt \frac{(2n)!}{(n!)^2}\qquad \forall n \ge 2.$$
What I've come up with is the following:
$\underline{n=2:}\qquad$ $$\frac {16}{3} \lt 6$$
$\underline{n=k:}\qquad $$$\frac {4^k}{k+1} \lt \frac{(2k)!}{(k!)^2} $$
$\underline{n+1}:$ $$\frac {4^{k+1}}{k+2} \lt \frac{(2(k+1))!}{((k+1)!)^2} $$ $$\frac{4^k \cdot 4}{k+2} \lt \frac {(2k+2)!}{(k!)^2\cdot(k+1)\cdot(k+1)}$$ $$\frac{4^k \cdot 4}{k+2} \lt \frac{(k+1)\cdot \ldots \cdot (k + (k-1))\cdot{2k} \cdot (2k+1)\cdot(2k+2)}{(k!)^\require{enclose}\enclose{updiagonalstrike}2\cdot(k+1)\cdot(k+1)}$$ $$\frac{4^k \cdot 4}{k+2} \lt 2 \cdot\frac{\require{enclose}\enclose{updiagonalstrike}{(k+1)}\cdot \ldots \cdot (k + (k-1))\cdot{2k} \cdot (2k+1)\cdot\require{enclose}\enclose{updiagonalstrike}{(k+1)}}{(k!)\cdot\require{enclose}\enclose{updiagonalstrike}{(k+1)}\cdot\require{enclose}\enclose{updiagonalstrike}{(k+1)}}$$ $$\frac{4^k \cdot 4}{k+2} \lt 2 \cdot\frac{{(k+2)}\cdot \ldots \cdot (k + (k-1))\cdot{2k} \cdot (2k+1)}{(k!)}$$
From here on I'm stuck. Can somebody help me please?