The following is a problem from Chapter 22 "Infinite Sequences" of Spivak's Calculus
- Suppose that $a_n>0$ for each $n$ and that $$\lim\limits_{n\to\infty} \frac{a_{n+1}}{a_n}=l\tag{1}$$ Prove that
$$\lim\limits_{n\to\infty} \sqrt[n]{a_n}=l\tag{2}$$
My solution differed from the solution manual, so I wanted to check its correctness.
Here is my solution attempt
$$a_n(l-\epsilon)<a_{n+1}<a_n(l+\epsilon)$$
$$a_{n+1}(l-\epsilon)<a_{n+2}<a_{n+1}(l+\epsilon)$$
$$a_n(l-\epsilon)^2<a_{n+2}<a_n(l+\epsilon)^2$$
Thus
$$a_n(l-\epsilon)^m<a_{n+m}<a_n(l+\epsilon)^m$$
$$\sqrt[n+m]{a_n(l-\epsilon)^m}<\sqrt[n+m]{a_{n+m}}<\sqrt[n+m]{a_n(l+\epsilon)^{m}}$$
$$\lim\limits_{m\to\infty}\sqrt[n+m]{a_n}\lim\limits_{m\to\infty}\sqrt[n+m]{(l-\epsilon)^m}<\lim\limits_{m\to\infty}\sqrt[n+m]{a_{n+m}}<\lim\limits_{m\to\infty}\sqrt[n+m]{a_n}\lim\limits_{m\to\infty}\sqrt[n+m]{(l+\epsilon)^m}\tag{1}$$
Since $a_n>0$, then $\lim\limits_{m\to\infty}\sqrt[n+m]{a_n}=1$.
$l>0$ since $a_n>0$. Note that $l\neq 0$ since then $(1)$ would be false.
Thus
$$\lim\limits_{m\to\infty}\sqrt[n+m]{(l-\epsilon)^m}=l-\epsilon$$
$$\lim\limits_{m\to\infty}\sqrt[n+m]{(l+\epsilon)^m}=l+\epsilon$$
and
$$l-\epsilon<\lim\limits_{m\to\infty} \sqrt[n+m]{a_{n+m}}<1+\epsilon$$
for every $\epsilon>0$. Thus
$$\lim\limits_{m\to\infty} \sqrt[n+m]{a_{n+m}}=l$$
Is this correct?