I have the following limit,
$$\lim_{n\rightarrow \infty}\left \{ \frac{\left ( n+1 \right )\left ( n+2 \right )...3n}{n^{2n}} \right \}^{\frac{1}{n}}$$
My procedure of solving (which is wrong).
Step 1: I break up the expression in the following manner,
$$\lim_{n\rightarrow \infty }\left \{ \left ( 1+\frac{1}{n} \right )\left ( 1+\frac{2}{n} \right )...\left ( \frac{3n}{n} \right ) \right \}^{\frac{1}{n}}$$
Step 2: I apply the limits,
$$\left \{ \left ( 1+\frac{1}{\infty } \right ) \left ( 1+\frac{2}{\infty } \right )...\left ( 2+\frac{1}{\infty } \right )...3\right \}^{\frac{1}{\infty }}$$
which makes it, $$\left \{ 1^{\infty } *2^{\infty }*3\right \}^{0}$$
I am stuck here and could not proceed. Can somebody please help me out?