Let us consider a family of functions $g_{n, t} : [0, 1]^n \to \mathbb{R}$ defined by $g_{n, t}(y_1, \ldots, y_n) = 1_{y_1 + y_2 + \cdots + y_n \leq t}$. I claim that $\int\limits_{[0, 1]^n} g_{n, t}(y_1, \ldots, y_n) dy_1 \ldots dy_n = \frac{t^n}{n!}$ for all $n \in \mathbb{N}_{> 0}$, $t \in [0, 1]$, and equals $0$ for $t < 0$.
We prove this by induction on $n$.
The base case here is $n = 1$. In this case, it is clear that the integral gives us $t = \frac{t^1}{1!}$ for $t \in [0, 1]$ as required and gives us $0$ for $t < 0$.
Now, we consider the inductive step. Write $n = k + 1$, and suppose $\int\limits_{[0, 1]^k} g_{k, t}(y_1, \ldots, y_k) dy_1 \ldots dy_k = \frac{t^k}{k!}$ for all $t \in [0, 1]$.
Then we have $\int\limits_{[0, 1]^{k + 1}} g_{k + 1, t}(y_1, \ldots, y_k, y_{k + 1}) dy_1 \ldots dy_k dy_{k + 1} = \int\limits_0^1 dy_{k + 1} \int\limits_{[0, 1]^k} g_{k + 1, t}(y_1, \ldots, y_k, y_{k + 1}) dy_1 \ldots dy_k$ by Fubini's theorem.
Now note that $g_{k + 1, t}(y_1, \ldots, y_k, y_{k + 1}) = 1_{y_1 + \cdots + y_k + y_{k + 1} \leq t}$. Note that $y_1 + \cdots + y_k + y_{k + 1} \leq t$ if and only if $y_1 + \cdots + y_k \leq t - y_{k + 1}$. Therefore, $1_{y_1 + \cdots + y_k + y_{k + 1} \leq t} = 1_{y_1 + \cdots + y_k \leq t - y_{k + 1}} = g_{k, t - y_{k + 1}}(y_1, \ldots, y_k)$. So we can rewrite the integral as $\int\limits_0^1 dy_{k + 1} \int\limits_{[0, 1]^k} g_{k, t - y_{k + 1}}(y_1, \ldots, y_k) dy_1 \ldots dy_k$. By the inductive hypothesis, we have
$\int\limits_{[0, 1]^k} g_{k, t - y_{k + 1}}(y_1, \ldots, y_k) dy_1 \ldots dy_k = \begin{cases} \frac{(t - y_{k + 1})^k}{k!} & y_{k + 1} \leq t \\
0 & otherwise \end{cases}$
So the integral can be rewritten as $\int\limits_0^t dy_{k + 1} \frac{(t - y_{k + 1})^k}{k!}$. Make the $u$-substitution $u = t - y_{k + 1}$ to get the integral $\int\limits_0^t \frac{u^k}{k!} du = \frac{t^{k + 1}}{(k + 1) k!} = \frac{t^{k + 1}}{(k + 1)!}$. This is exactly what we needed to show. The proof is complete. $\square$
So in particular, for $g(y_1, \ldots, y_n) = g_{n, 1}(y_1, \ldots, y_n)$, we have $\int\limits_{[0, 1]^n} g(y_1, \ldots, y_n) dy_1 \ldots dy_n = \frac{1}{n!}$.