The value of the integral in the OP is
$$\begin{align}
\int_\limits{\substack{x_1,\ldots,x_n>0\\
x_1+\ldots+x_n\leq1}}x^{b_1-1}_1\cdot\ldots\cdot x^{b_n-1}_n\,d\mathbf{x}&=
\frac{\Gamma(b_1)\cdot\ldots\cdot\Gamma(b_n)}{\Gamma(b_1+\ldots+b_n+1)}\tag{OP}\label{op}
\end{align}
$$
where $\Gamma(x)=\int^\infty_0t^{x-1}e^{-t}\,dt$ is the Gamma function.
As it has been pointed out, the integral in the OP is related to the generalized beta function. There are many ways to study this integral. Here I present two methods: (1) using spherical coordinates (2) using a linear change of variables followed by introduction of the generalized beta function.
Consider the integral
\begin{align} I:=\int_{\mathbb{R}^n_+}f(x_1+\ldots+x_n)x^{b_1-1}_1\cdot\ldots\cdot x^{b_n-1}_n\,d\boldsymbol{x}\tag{0}\label{zero}
\end{align}
where $b_1,\ldots, b_n>0$. The case $f(x)=\mathbb{1}_{[0,1]}(x)$ corresponds to the integral in the OP.
Method 1: spherical coordinates
As the OP wishes to use spherical coordinates, we consider again integrals of the form \eqref{zero}. The change of variable
$$\begin{align}
X&:\mathbb{R}^n_+\rightarrow\mathbb{R}^n_+\\
\mathbf{z}&\mapsto[z^2_1,\ldots,z^2_n]^\intercal
\end{align}$$
yields
\begin{align}
I &= \int_\limits{\mathbb{R}^n_+}f(x_1+\ldots+x_n)x^{b_1-1}_1\cdot\ldots\cdot x^{b_n-1}_n\,d\boldsymbol{x}\\
&=2^n\int_\limits{\mathbb{R}^n_+}f(|\mathbf{z}|^2)z_1^{2b_1-1}\cdot\ldots\cdot z_n^{2b_n-1}\,d\mathbf{z}
\end{align}
(notice that $G$ is a diffeomorphism from $(0,\infty)^n$ to itself, and that the Jacobian $J_X(\mathbf{z})=2^nz_1\cdot\ldots\cdot z_n$). Using spherical coordinates gives
$$\begin{align}
I &= 2^n\int^\infty_0f(r^2)r^{2b_1+\ldots+2b_n -1}\,dr \int_{\mathbf{S}_{n-1}}\mathbb{1}_{P_+}(\mathbf{u})u^{2b_1-1}_1\cdot\ldots\cdot u^{2b_n-1}_n\,\sigma(d\mathbf{u})\\
&= F_n \int^\infty_0f(r^2)r^{2b_1+\ldots+2b_n -1}\,dr \\
&=\frac12 F_n\int^\infty_0 f(s) s^{b_1+\ldots + b_n-1}\,ds
\end{align}$$
where $P_+$ is the postive octant in $\mathbb{R}^n$, and $F_n=2^n\int_{\mathbb{S}_{n-1}}\mathbb{1}_{P_+}(\mathbf{u})u^{2b_1-1}_1\cdot\ldots\cdot u^{2b_n-1}_n\,\sigma(d\mathbf{u})$.
When $f(t)=e^{-t}$, we obtain
$$\begin{align}
\Gamma(b_1)\cdot\ldots\cdot\Gamma(b_n)
=\frac12 F_n\int^\infty_0e^{-s}s^{b_1+\ldots+b_n-1}=\frac12F_n\, \Gamma(b_1+\ldots+b_n)
\end{align}
$$
Consequently,
$$
\frac12 F_n=\frac{\Gamma(b_1)\cdot\ldots\cdot\Gamma(b_n)}{\Gamma(b_1+\ldots+b_n)}=: B(b_1,\ldots,b_n)
$$
and so
$$\begin{align}
\int_\limits{\mathbb{R}^n_+} &f(x_1+\ldots+x_n)x^{b_1-1}_1\cdot\ldots\cdot x^{b_n-1}_n\,d\boldsymbol{x}\\
&\qquad =B(b_1,\ldots,b_n)\int^\infty_0f(s)s^{b_1+\ldots+b_n-1}\,ds\tag{1}\label{one}
\end{align}
$$
The estimate \eqref{op} follows by applying \eqref{one} to the case $f(t)=\mathbb{1}_{[0,1]}(t)$.
Method 2: Linear transformation and generalized beta function:
On $\mathbb{R}^n_+$ define
\begin{align}
g(t_1,\ldots,t_n):=f(t_n)t^{b_1-1}_1\cdot\ldots\cdot t^{b_{n-1}-1}_{n-1}\big(t_n-(t_1+\ldots+t_{n-1})\big)^{b_n-1},
\end{align}
and
\begin{align}
T\boldsymbol{x}:=\left(\begin{array}{llcrr}
1 & 0 & \ldots &0 &0\\
0 & 1 & \ldots &0 &0\\
\vdots & \vdots &\ddots &\vdots &\vdots \\
0 & 0 & \ldots & 1 & 0\\
1 & 1& \ldots &1 & 1
\end{array}
\right) \left(\begin{array}{l}
x_1\\
x_2\\
\vdots\\
x_{n-1}\\
x_n
\end{array}\right)
\end{align}
Then $I=\int_{\mathbb{R}^n_+}g(T\boldsymbol{x})|J_T(\boldsymbol{x})|\,d\boldsymbol{x}$, and $T(\mathbb{R}^n_+)=\{\boldsymbol{t}\in\mathbb{R}^n_+: t_1+\ldots+t_{n-1}<t_n\}$ and so,
\begin{align}
I=\int^\infty_0 f(t_n)\left(\int\limits_{\substack{t_1,\ldots,t_{n-1}>0\\
t_1+\ldots+t_{n-1}<t_n}} t^{b_1-1}_1\ldots t^{b_{n-1}-1}_{n-1}(t_n-t_1-\ldots-t_{n-1})^{b_n-1}\,dt_1\ldots dt_{n-1}\right)\,dt_n
\end{align}
Setting $G(\boldsymbol{t}):=(t_1/t_n,\ldots,t_{n-1}/t_n, t_n)$ we obtain that $|J_G(\boldsymbol{t})|=t^{-(n-1)}_n$, and $D_{n-1}:=G(T(\mathbb{R}^n_+))=\{\boldsymbol{v}\in\boldsymbol{R}^n_+: v_1,\ldots, v_n>0,v_1+\ldots v_{n-1}<1\}$. Hence
\begin{align}
I=\left(\int_\limits{D_{n-1}} v^{b_1-1}_1\ldots v^{b_{n-1}-1}_{n-1}\big(1-(v_1+\ldots + v_{n-1})\big)^{b_n-1}\,dv_1\ldots dv_{n-1}\right)\int^\infty_0f(v)v^{\alpha-1}\,dv
\end{align}
where $\alpha=b_1+\ldots+b_n$. The generalized Beta function is defined as
\begin{align}
B(b_1,\ldots, b_n):=\int\limits_{\substack{v_1,\ldots,v_{n-1}>0\\
v_1+\ldots+v_{n-1}<1}} v^{b_1-1}_1\ldots v^{b_{n-1}-1}_{n-1}\big(1-(v_1+\ldots + v_{n-1})\big)^{b_n-1}\,dv_1\ldots dv_{n-1}
\end{align}
Then,
\begin{align}
\int\limits_{\mathbb{R}^n_+}f(x_1+\ldots+x_n)x^{b_1-1}_1\ldots x^{b_n-1}_n\,d\boldsymbol{x} = B(b_1,\ldots,b_n)\int^\infty_0 f(s) s^{b_1+\ldots+b_n-1}\,ds
\end{align}
The case $f(t)=e^{-t}$ yields
\begin{align}
B(b_1,\ldots,b_n)=\frac{\Gamma(b_1)\cdot\ldots\cdot\Gamma(b_n)}{\Gamma(b_1+\ldots+b_n)}
\end{align}
Putting things together, we obtain formula \eqref{one} above.
As before, \eqref{op} follows by applying \eqref{one} $f(t)=\mathbb{1}_{[0,1]}(t)$.