0

I'm searching a way to calculate the eigenvalues of the matrix

$$\begin{pmatrix} 0 & 1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

Is it smarter to analyze the difference ${\bf J} - {\bf I}_{n \times n}$, where $\bf J$ is the matrix full with ones and ${\bf I}_{n \times n}$ the identity matrix?

vitalmath
  • 275
  • 2
  • 12

0 Answers0