Note:
$$\begin{vmatrix}-t & 1 & \cdots &1&1\\ 1 & -t & \cdots & 1& 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 1& 1 &\cdots & -t& 1\\ 1& 1 &\cdots & 1& -t\end{vmatrix}=0 \stackrel{\text{add columns}}{\Rightarrow} \\
(n-1-t)\begin{vmatrix}1 & 1 & \cdots &1&1\\ 1 & -t & \cdots & 1& 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 1& 1 &\cdots & -t& 1\\ 1& 1 &\cdots & 1& -t\end{vmatrix}=0 \stackrel{R_1-R_i\to R_i,i=2,3,...,n}{\Rightarrow} \\
(n-1-t)\begin{vmatrix}1 & 1 & \cdots &1&1\\ 0 & 1+t & \cdots & 0& 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0& 0 &\cdots & 1+t& 0\\ 0& 0 &\cdots & 0& 1+t\end{vmatrix}=0 \Rightarrow \\
(n-1-t)(1+t)^{n-1}=0 \Rightarrow \\
t_1=n-1,t_i=-1, i=2,3,...,n.$$