How to show that $1-e^{-\lambda}\leq \lambda ^{\alpha}$ for all $\lambda\geq 0$ and $\alpha\in (0,1]$.
My attempt: Let us define $f(\lambda)= \lambda^{\alpha}+e^{-\lambda}-1$ then $f'(\lambda)= \alpha\lambda^{\alpha-1}-e^{-\lambda}=\alpha \lambda^{\alpha}\frac{1}{\lambda}-\frac{1}{e^{\lambda}}$ and using that $\alpha<1$ and $-\frac{1}{e^{\lambda}}$ is negative then
$f'(\lambda)\leq \lambda^{\alpha}\frac{1}{\lambda}$ i believe that i have eproblems with $\lambda\in (0,1)$. For $\lambda>1$ then $f'(\lambda)\leq \lambda^{\alpha}$
The other way that i was tried is by series $1-e^{-\lambda}=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{\lambda ^n}{n!}$ but i am stuck. How can continued please?
Thank you