0

I am trying to prove the product rule derivative using the definition of the derivative.

Definition of derivative --> $h'(c)= \lim_{ n \to 0} = \frac{h(c+n) - h(c)}{n}$

Prove $h'(c) = f'(c)g(c) + f(c)g'(c) $

$h'(c)= \lim_{ n \to 0} = \frac{h(c+n) - h(c)}{n} = \lim_{n \to 0} \frac{f(c+n)g(c+n) - f(c)g(c)}{n}$

$\lim_{n \to 0} \frac{(f(c+n)g(c+n) - f(c+n)g(c)) - (f(c+n)g(c)- f(c)g(c))}{n}$

$\lim_{n \to 0} f(c+n)( \frac{g(c+n)-g(c)}{n}) + \lim_{n \to 0} g(c) \frac{f(c+n)+f(c)}{n}$

From the above its easy to see that it is equals to - $h'(c) = f'(c)g(c) + f(c)g'(c) $

But I have major confusions on:

$\lim_{n \to 0} \frac{(f(c+n)g(c+n) - f(c+n)g(c)) - (f(c+n)g(c)- f(c)g(c))}{n}$

How did this happen from $\lim_{n \to 0} \frac{f(c+n)g(c+n) - f(c)g(c)}{n}$

Anne Bauval
  • 34,650
user307640
  • 2,632
  • 2
  • 17
  • 27

1 Answers1

2

There is a typo when you write $\frac{(f(c+n)g(c+n) - f(c+n)g(c)) - (f(c+n)g(c)- f(c)g(c))}{n}$. You have

$$ \frac{(f(c+n)g(c+n) - f(c)g(c))}{n} = \frac{(f(c+n)g(c+n) - f(c+n)g(c)) + (f(c+n)g(c)- f(c)g(c))}{n}$$