I'm reading over a proof for the Woodbury matrix identity. However, there is a part of the proof that I'm not sure of (highlighted in red below).
The Woodbury matrix identity states that, given the complex matrices $A \in \mathbb C^{n \times n},B \in \mathbb C^{n \times m},C \in \mathbb C^{m \times m},$ and $D \in \mathbb C^{m \times n}$, and given that $A,C,$ and $A + BCD$ are invertible, then $$ (A + BCD)^{-1} = A^{-1} - A^{-1}B\left(C^{-1} + DA^{-1}B\right)^{-1}DA^{-1} $$ To prove this identity, let $M = \begin{bmatrix} A & B \\ D & -C^{-1}\end{bmatrix}$ and $M^{-1} = \begin{bmatrix} X & W \\ Y & Z\end{bmatrix}$, where $X,W,Y,$ and $Z$ are complex block matrices with appropriate dimensions, such that \begin{align} MM^{-1} = \begin{bmatrix} I & 0 \\ 0 & I\end{bmatrix} &= \begin{bmatrix} A & B \\ D & -C^{-1}\end{bmatrix} \begin{bmatrix} X & W \\ Y & Z\end{bmatrix} \\ &= \begin{bmatrix} AX + BY & AW + BZ \\ DX - C^{-1}Y & DW - C^{-1}Z\end{bmatrix} \end{align} Therefore, \begin{align} AX + BY &= I \tag{1}\label{eq:1a_1st} \\ DX - C^{-1}Y &= 0 \tag{2}\label{eq:1a_2nd} \end{align} From \eqref{eq:1a_1st}, $X = A^{-1}(I - BY)$. Substituting this into \eqref{eq:1a_2nd} yields \begin{align} DX - C^{-1}Y &= 0 \\ DA^{-1}(I - BY) &= C^{-1}Y \\ DA^{-1} - DA^{-1}BY &= C^{-1}Y \\ DA^{-1} &= DA^{-1}BY + C^{-1}Y \\ \color{red}{DA^{-1}} &\begingroup\color{red}=\endgroup \color{red}{(DA^{-1}B + C^{-1})Y} \\ \color{red}{(DA^{-1}B + C^{-1})^{-1}DA^{-1}} &\begingroup\color{red}=\endgroup \color{red}{Y} \end{align} This is the part of the proof that I don't understand. How do we know that the inverse of $(DA^{-1}B + C^{-1})$ exists to proceed as shown above? We are given that $A + BCD$ is invertible, but I'm not sure how this is relevant.