Consider the following matrix:
$ A=\begin{pmatrix} 1&1&1\\ 1&1&1\\ 1&1&0 \end{pmatrix} $
The eigenvalues are $\lambda_1=0$, $\lambda_2=1-\sqrt{3}≤0$ and $\lambda_3=1+\sqrt{3}≥0$.
But when computing the principal minors we obtain:
$A_1=1≥0$
$A_2=\begin{vmatrix} 1&1\\ 1&1 \end{vmatrix} = 0$
$A_2= \begin{vmatrix} 1&1&1\\ 1&1&1\\ 1&1&0 \end{vmatrix} = 0$
So all leading principal minors are ≥ 0, but we have two eigenvalues with different sign and the third one is zero... Im really confused, thank you!