Is there any way for me to solve the inverse Laplace Transform of $\frac{e^{-\sigma\sqrt{x}}}{\sqrt{x}}$? Here is my attempt to solve this:
$$ \frac{1}{2\pi i}\int_{a-i\infty}^{a+i\infty} \frac{e^{-\sigma\sqrt{s}+ts}} {\sqrt{s}}ds = \frac{1}{2\pi \sigma i}\int_{a-i\infty}^{a+i\infty} -e^{ts} de^{-\sigma \sqrt{s}} = \frac{1}{2\pi \sigma i} (-e^{-\sigma\sqrt{s} +ts}|_{a-i\infty}^{a+i\infty} + t\int_{a-i\infty}^{a+i\infty} e^{-\sigma \sqrt{s}}e^{ts}ds)=-\frac{1}{2\pi \sigma i} e^{-\sigma\sqrt{s} +ts}|_{a-i\infty}^{a+i\infty} + \frac{t}{2\sqrt{\pi}}t^{-3/2}e^{-\sigma^2 / 4t} $$
The second part is actually the Inverse Laplace Transform of $e^{-\sigma\sqrt{x}}$. The problem is I don't know how to get the value of first part $e^{-\sqrt{s} +ts}|_{a-i\infty}^{a+i\infty}$. Is there any hint for me?
Thank you so much!