First, enforcing the substitution $t\to t^2$ in the integral of interest yields
$$\begin{align}
\int_0^\infty e^{-st}\,\frac{e^{-u^2/4t}}{\sqrt{\pi t}}\,dt&=\frac{2}{\sqrt\pi}\int_0^\infty e^{-s\left(t^2+u^2/4st^2\right)}\,dt\\\\
&=\frac{2e^{-u/\sqrt{s}}}{\sqrt\pi}\int_0^\infty e^{-s\left(t-u/2\sqrt{s}t\right)^2}\,dt \tag 1
\end{align}$$
Second, enforcing the substitution $t\to \sqrt{\frac{u}{2\sqrt{s}}}\,t$ into the right-hand side of $(1)$ and letting $\alpha =\sqrt{\frac{u}{2\sqrt{s}}}$ reveals
$$\frac{2e^{-u/\sqrt{s}}}{\sqrt\pi}\int_0^\infty e^{-s\left(t-u/2\sqrt{s}t\right)^2}\,dt=\frac{2e^{-u\sqrt{s}}}{\sqrt\pi}\alpha \int_0^\infty e^{-\alpha^2 s\left(t-1/t\right)^2}\,dt \tag 2$$
Third, enforcing the substitution $t\to 1/t$ in the integral on the right-hand side of $(3)$, we obtain
$$\frac{2e^{-u\sqrt{s}}}{\sqrt\pi}\alpha \int_0^\infty e^{-\alpha^2 s\left(t-1/t\right)^2}\,dt =\frac{2e^{-u\sqrt{s}}}{\sqrt\pi}\alpha \int_0^\infty e^{-\alpha^2 s\left(t-1/t\right)^2}\,\left(\frac{1}{t^2}\right)\,dt \tag 3$$
Next, adding $(2)$ and $(3)$ and dividing by $2$, we find that
$$\begin{align}
\frac{2e^{-u\sqrt{s}}}{\sqrt\pi}\alpha \int_0^\infty e^{-\alpha^2 s\left(t-1/t\right)^2}\,dt&=\frac{e^{-u\sqrt{s}}}{\sqrt\pi}\alpha \int_0^\infty e^{-\alpha^2 s\left(t-1/t\right)^2}\,\left(1+\frac{1}{t^2}\right)\,dt\\\\
&=\frac{e^{-u\sqrt{s}}}{\sqrt\pi}\alpha \int_{-\infty}^{\infty}e^{-\alpha^2 s u^2}\,du\\\\
&=\frac{e^{-u\sqrt{s}}}{\sqrt{s}} \tag 4
\end{align}$$
Finally, substituting $(4)$ into $(1)$ we find
$$\bbox[5px,border:2px solid #C0A000]{\int_0^\infty e^{-st}\,\frac{e^{-u^2/4t}}{\sqrt{\pi t}}\,dt=\frac{e^{-u\sqrt{s}}}{\sqrt{s}}}$$
as was to be shown!