Is the following statement true?:
$\frac{1}{n} \leq \sum_{i=1}^{n}\alpha_i^2$
where $\sum_{i=1}^n \alpha_i = 1$
My guess is yes, but i can't prove it mathematically. Any ideas?
Is the following statement true?:
$\frac{1}{n} \leq \sum_{i=1}^{n}\alpha_i^2$
where $\sum_{i=1}^n \alpha_i = 1$
My guess is yes, but i can't prove it mathematically. Any ideas?
Inequality Cauchy-Schwarz:
$$ (a_1^2+\cdots+a_n^2)(b_1^2+\cdots+b_n^2)\ge a_1b_1+\cdots+a_nb_n $$ Hence $$ n(a_1^2+\cdots+a_n^2)=(a_1^2+\cdots+a_n^2)(1^2+\cdots+1^2)\ge a_1\cdot 1+\cdots+a_n\cdot1=1 $$ and hence $$ a_1^2+\cdots+a_n^2\ge\frac{1}{n} $$