Noting that the evaluation of the integral can be simplified by the Fourier series of $\ln(\sin x)$,
$$\ln (\sin x)+\ln 2=-\sum_{k=1}^{\infty} \frac{\cos (2 k x)}{k}$$ Multiplying the equation by $x$ followed by integration from $0$ to $\infty$, we have
$$ \begin{aligned} \int_{0}^{\frac{\pi}{2}} x \ln (\sin x) d x+\int_{0}^{\frac{\pi}{2}} x\ln 2 d x&=-\sum_{k=1}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{x \cos (2 k x)}{k} d x\\ \int_{0}^{\frac{\pi}{2}} x \ln (\sin x) d x+\left[\frac{x^{2}}{2} \ln 2\right]_{0}^{\frac{\pi}{2}}&=-\sum_{k=1}^{\infty} \frac{1}{2 k^{2}} \int_{0}^{\frac{\pi}{2}} x d(\sin 2 k x)\\ \int_{0}^{\frac{\pi}{2}} x \ln (\sin x) d x&=-\frac{\pi^{2}}{8} \ln 2-\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}}\left[\frac{\cos 2(x)}{2 k}\right]_{0}^{\frac{\pi}{2}} \\ &=-\frac{\pi^{2}}{8} \ln 2-\frac{1}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k}-1}{k^{3}}\\ &=-\frac{\pi^{2}}{8} \ln 2+\frac{1}{4}\left(\sum_{k=1}^{\infty} \frac{2}{(2 k+1)^{3}}\right)\\ &=-\frac{\pi^{2}}{8} \ln 2+\frac{1}{2}\left[\sum_{k=1}^{\infty} \frac{1}{k^{3}}-\sum_{k=1}^{\infty} \frac{1}{(2 k)^{3}}\right]\\ &=-\frac{\pi^{2}}{8} \ln 2+\frac{7}{16}\zeta(3) \blacksquare \end{aligned} $$ Furthermore, $$ \begin{aligned} \int_0^{\frac{\pi}{2}} x \ln (\cos x) d x&=\frac{\pi}{2} \int_0^{\frac{\pi}{2}} \ln (\sin x)-\int_0^{\frac{\pi}{2}} x \ln (\sin x) d x \\ &=-\frac{\pi^2}{4} \ln 2-\left(-\frac{\pi^2}{8} \ln 2+\frac{7}{16}\zeta(3)\right) \\ &=-\frac{\pi^2}{8} \ln 2-\frac{7}{16} \zeta(3) \end{aligned} $$ and $$ \int_0^{\frac{\pi}{2}} x \ln (\tan x) d x=\int_0^{\frac{\pi}{2}} x \ln (\sin x) d x-\int_0^{\frac{\pi}{2}} x \ln (\cos x) d x=\frac{7}{8}\zeta(3) $$