Let $A, A_n \in \mathcal C$ such that $d_H (A, A_n) \to 0$. By this result, we get
$$
A = \{ \lim x_n \mid (x_n) \in (A_n)\text{ convergent in } d\}.
$$
We need to prove that $d'_H (A, A_n) \to 0$. Assume the contrary that $d'_H (A, A_n) \not\to 0$. Then there is $\varepsilon > 0$ and a subsequence $\varphi$ of $\mathbb N$ such that $d'_H (A, A_{\varphi (n)}) > \varepsilon$ for all $n$. By definition of $d'_H$, we have $2$ cases.
- There exists a subsequence $\psi$ of $\varphi$ and a sequence $(\ell_{\psi (n)}) \subset A$ such that $d' (\ell_{\psi (n)}, A_{\psi (n)}) > \varepsilon$ for all $n$.
Because $A$ is compact, there is a subsequence $\lambda$ of $\psi$ and $\ell \in A$ such that $\ell_{\lambda (n)} \xrightarrow{n \to \infty} \ell$ in $d'$. Then
$$
d' (\ell, A_{\lambda (n)}) \ge d' (\ell_{\lambda (n)}, A_{\lambda (n)})- d' (\ell, \ell_{\lambda (n)}) > \varepsilon/2
$$
for $n$ large enough. This implies if $(x_{\lambda (n)}) \in (A_{\lambda (n)})$ then $x_{\lambda (n)} \not \to \ell$ in $d'$. Because $d,d'$ are equivalent, if $(x_{\lambda (n)}) \in (A_{\lambda (n)})$ then $x_{\lambda (n)} \not \to \ell$ in $d$. This implies $\ell \notin A$, which is a contradiction.
- There exists a subsequence $\psi$ of $\varphi$ and a sequence $(a_{\psi (n)}) \in (A_{\psi (n)})$ such that $d' (a_{\psi (n)}, A) > \varepsilon$ for all $n$.
Because $A_n \to A$ in $d_H$, there is a subsequence $\lambda$ of $\psi$ and sequences $(a_{\lambda(n)}) \in (A_{\lambda (n)})$ and $(\ell_{\lambda(n)}) \subset A$ such that $d(a_{\lambda(n)}, \ell_{\lambda(n)}) \to 0$. Because $A$ is compact, there is a subsequence $\eta$ of $\lambda$ and $\ell^* \in A$ such that $\ell_{\eta (n)} \xrightarrow{n \to \infty} \ell^*$ in $d$. It follows that $a_{\eta (n)} \xrightarrow{n \to \infty} \ell^*$ in $d$.
It follows from $d' (a_{\psi (n)}, A) > \varepsilon$ for all $n$ that
$$
d' (a_{\eta (n)}, \ell) > \varepsilon \quad \forall n \in \mathbb N, \forall \ell \in A.
$$
Hence $a_{\eta (n)} \not \to \ell$ in $d'$ for all $\ell \in A$. Because $d,d'$ are equivalent, $a_{\eta (n)} \not \to \ell$ in $d$ for all $\ell \in A$. In particular, $a_{\eta (n)} \not \to \ell^*$ in $d$. This is a contradiction.