I'm trying to verify that $d_H$ is indeed a bona fide metric. Could you have a check on the triangle inequality part?
Theorem: Let $(E, d)$ be a metric space and $\mathcal C$ the set of all compact subsets of $E$. We define $d_H: \mathcal C \times \mathcal C \to \mathbb R \cup \{+\infty\}$ by $$ d_H (A, B) := \max \{ \sup \{ d(x, A) \mid x \in B\} , \sup \{ d(y, B) \mid y \in A\} \} \quad \forall A,B \in \mathcal C. $$ with $d(x, A) := \inf_{y \in A} d(x, y)$. Then $d_H$ is a metric.
My attempt: First of all, $\mathcal C$ contains compact sets, so $$ d_H (A, B) := \max \{ \max \{ d(x, A) \mid x \in B\} , \max \{ d(y, B) \mid y \in A\} \}. $$
Hence $d_H$ is $\mathbb R_{\ge 0}$-valued and symmetric. Also, $$ \begin{align} d_H (A, B) = 0 &\iff \max \{ d(x, A) \mid x \in B\} = \max \{ d(y, B) \mid y \in A\} = 0 \\ &\iff d(x,A) = d(y, B) = 0 \quad \forall (x,y) \in B \times A \\ &\iff (x, y) \in A \times B \quad \forall (x,y) \in B \times A \\ &\iff A = B. \end{align} $$
We want to prove $$ d_H (A, B) + d_H (B, C) \ge d_H (A, C) \quad \forall A, B, C \in \mathcal C. $$
This is equivalent to $$ \begin{align} & \max \{ \max \{ d(b, A) \mid b \in B\} , \max \{ d(a, B) \mid a \in A\} \} \\ +& \max \{ \max \{ d(c, B) \mid c \in C\} , \max \{ d(b, C) \mid b \in B\} \} \\ \ge& \max \{ \max \{ d(c, A) \mid c \in C\} , \max \{ d(a, C) \mid a \in A\} \}. \end{align} $$
It suffices to $$ \begin{align} \max \{ d(b, A) \mid b \in B\} + \max \{ d(c, B) \mid c \in C\} &\ge \max \{ d(c, A) \mid c \in C\} \quad (1) \\ \max \{ d(a, B) \mid a \in A\} + \max \{ d(b, C) \mid b \in B\} &\ge \max \{ d(a, C) \mid a \in A\} . \end{align} $$
By symmetry, it is enough to prove (1) by showing that $$ \max \{ d(b, A) \mid b \in B\} + d(c, B) \ge d(c, A) \quad \forall c \in C \quad (2). $$
Fix $c \in C$. There is $b_c \in B$ such that $d(c, b_c) = d(c, B)$. Then $$ \max \{ d(b, A) \mid b \in B\} + d(c, B) \ge d(b_c, A) + d(c, b_c) \ge d(c, A). $$
This completes the proof.