You are confusing notation and coordinate representation of vectors. That is, a vector space is an algebraic structure defined using four objects $(V, \mathbb{F}, \oplus ,\odot )$ where $(V, \oplus)$ is an Abelian group, $(\mathbb{F},+,\cdot )$ is a field and
$$
\odot :\mathbb{F}\times V\to V,\quad (\lambda ,\mathbf{v})\mapsto \lambda \odot \mathbf{v}
$$
is a function named scalar multiplication, such that the following conditions holds:
$$
\lambda \odot (\mathbf{v}\oplus \mathbf{w})=(\lambda \odot \mathbf{v})\oplus (\lambda \odot \mathbf{w}),\quad 1\odot \mathbf{v}=\mathbf{v},\quad 0\odot \mathbf{v}=\mathbf 0
\\(\lambda +\mu)\odot \mathbf{v}=(\lambda \odot \mathbf{v})\oplus (\mu \odot \mathbf{v}),\quad (\lambda \cdot \mu )\odot \mathbf{v}=\lambda \odot (\mu \odot \mathbf{v})
$$
If the vector space have finite dimension (say dimension $n$), then there exists some list of linear independent vectors $\mathbf{v}_1,\ldots ,\mathbf{v}_n$ such that for every $\mathbf{w}\in V$ there exists scalars $\lambda _j\in \mathbb{F}$ such that
$$
\mathbf{w}=(\lambda _1\odot \mathbf{v}_1)\oplus \ldots \oplus (\lambda _n\odot \mathbf{v}_n)
$$
Then, using the previous list as a basis of $V$ we can represent the vector $\mathbf{w}$ as $(\lambda _1,\ldots ,\lambda _n)$, that is, there is a bijective map $\phi :V\to \mathbb{F}^n$ such that to each vector in $V$ gives a coordinate representation $(\lambda _1,\ldots ,\lambda _n)$, what is an element of $\mathbb{F}^n$.
So, for any Euclidean space $V$ of dimension $n$ we directly use the coordinate representation given by elements of $\mathbb{R}^n$. Now, as a notation we can represent any element of $\mathbb{R}^n$ by the standard notation for $n$-tuples, that is $(\lambda _1,\ldots ,\lambda _n)$, or using a matrix-like vertical notation
$$\begin{pmatrix}
\lambda _1\\ \vdots \\ \lambda _n
\end{pmatrix}$$
However both notations represent the same vector $\mathbf{w}\in V$, but we choose some or other notation depending on the context to make things easier, by example if $M$ is an $n\times n$ matrix then we choose the vertical notation to represent the action of $M$ by the left to some vector, in this case
$$
\begin{pmatrix}
M_{1,1}&&\cdots &&M_{1,n}\\\vdots && &&\vdots \\M_{n,1}&&\cdots && M_{n,n}
\end{pmatrix}\begin{pmatrix}
\lambda _1\\ \vdots \\ \lambda _n
\end{pmatrix}
$$
However, to write the coordinates of $\mathbf{w}$ inside a text is preferable to use the notation $(\lambda _1,\ldots ,\lambda _n)$ instead. I hope you see it more clear now.