$$\sum_{k=0}^{n-1}\frac{x^k}{k!}=\frac{e^x \Gamma (n,x)}{\Gamma (n)}$$
$$\sum_{k=n}^{\infty}\frac{x^k}{k!}=\frac{e^x (\Gamma (n)-\Gamma (n,x))}{\Gamma (n)}$$ So, we need to solve for $x$ the equation
$$2\Gamma (n,x)=\Gamma (n)$$ Numerically, it is better to look for the zero of function
$$f(x)=\log (2 \Gamma (n,x))-\log (\Gamma (n))$$ As you noticed, the solution is close to $n$.
If we make one single iteration of Newton method with $x_0=n$, we have
$$x_1=n+e^n n^{1-n} \Gamma (n,n) (\log (2 \Gamma (n,n))-\log (\Gamma (n)))$$ Looking here, there is nice approximation : to first order
$$\Gamma (n,n)\sim n^{n-1}\, e^{-n}\Bigg[\sqrt{\frac{\pi }{2}} \sqrt{n}-\frac{1}{3}+\frac{1}{12} \sqrt{\frac{\pi }{2n}} +O\left(\frac{1}{n}\right) \Bigg]$$ and then, guess what,
$$x_1 \sim n-\frac 13 +\frac{1}{9 \sqrt{2 \pi n}} +\frac{1}{81 \pi n}+O\left(\frac{1}{n^{\frac 32}}\right)$$
Just a few checks
$$\left(
\begin{array}{ccc}
n & \text{estimate} & \text{solution} \\
5 & 4.68728 & 4.67091 \\
10 & 9.68108 & 9.66871 \\
15 & 14.6784 & 14.6680 \\
20 & 19.6768 & 19.6677 \\
25 & 24.6757 & 24.6675 \\
30 & 29.6749 & 29.6673 \\
35 & 34.6743 & 34.6672 \\
40 & 39.6738 & 39.6672 \\
45 & 44.6734 & 44.6671 \\
50 & 49.6730 & 49.6671
\end{array}
\right)$$
Taking more terms, we have
$$x_1 \sim n-\frac 13 +\frac{1}{9 \sqrt{2 \pi n}}+\frac{5-12 \pi }{405 \pi n}+\frac{20+51 \pi }{4860 \sqrt{2} \pi ^{3/2}n^{3/2}}+O\left(\frac{1}{n^2}\right)$$ which, for $n=5$ gives $x_1=4.68177$.
Edit
For the case where $n=2p$, we need to solve
$$g(x)=\log (2 \Gamma (2p,x))-\log (\Gamma (2p))$$ As you noticed, the solution is close to $-\frac 1 2p$. Doing the same as above
$$x_1=-\frac 1 2p+2^{2 p-1} e^{-p/2} p^{1-2 p} \Gamma \left(2 p,-\frac{p}{2}\right) \left(\log(\Gamma (2 p))-\log \left(2 \Gamma \left(2
p,-\frac{p}{2}\right)\right)\right)$$ Using another approximation given in 1,
$$\Gamma \left(2 p,-\frac{p}{2}\right)\sim -\frac{1}{27} e^p p^{2 p-2} (9 p+1)\sim -\frac{1}{3} e^p p^{2 p-1}$$
At this point, at least for the time being, I am stuck.