13

This question is taken directly from Showing that $z^2 e^{-z^2/2} \int \frac{\phi^2(x)}{\cosh(xz)} \, dx \geq \frac{1}{2\sqrt{\pi}} \frac{z^2}{z^2+1}$ which unfortunately turned out to be untrue for all $z\ge0$.

By plotting the functions, it appears that the inequality is true for $0\le z\le1.$ That is, conjecturally, $$\int_{-\infty}^\infty\frac{e^{-u^2}}{\cosh zu}\,du\ge\frac{e^{z^2/2}\sqrt\pi}{z^2+1},\quad\forall z\in[0,1].$$

To simplify this, we can invoke the elegant identity $$\int_0^\infty\frac{e^{-u^2}}{\cosh\alpha u}\,du=\frac{\sqrt\pi}\alpha\int_0^\infty\frac{e^{-u^2}}{\cosh(\pi u/\alpha)}\,du$$ to obtain the equivalent $$\int_{-\infty}^\infty\frac{e^{-u^2}}{\cosh(\pi u/z)}\,du\ge\frac{ze^{z^2/2}}{z^2+1}.$$

Note the identity can be used as the integrand is an even function.

Substituting $x=u/z$ and $t=z^2$ yields $$\int_{-\infty}^\infty\frac{e^{-tx^2}}{\cosh\pi x}\,dx\ge\frac{e^{t/2}}{t+1}.\tag1$$ Can $(1)$ be proven analytically for all $t\in[0,1]$?

  • Sort of. You can reduce it to the case $t=1$ and one additional simple numeric inequality, but how are you going to verify those without computations? – fedja Jun 10 '22 at 04:14
  • @fedja If your whole proof simple? (I also have a proof assuming that it is not difficult to verify something like $\int_0^\infty \frac{\mathrm{e}^{-x^2-1/2}}{\cosh \pi x},\mathrm{d} x > \frac14, \int_0^\infty \frac{x^2\mathrm{e}^{-x^2-1/2}}{\cosh \pi x},\mathrm{d} x > \frac{1}{30}$. – River Li Jun 10 '22 at 06:30
  • @RiverLi The reduction is rather simple (take the logarithmic derivative of both sides and go back from the inequality at $t=1$), but the case $t=1$ is rather delicate: we have a leeway of just about $0.01$, so I don't know how to handle it properly yet. – fedja Jun 10 '22 at 09:17
  • @fedja Perhaps no easy way. So your proof is nice (remains to check $t=1$). – River Li Jun 10 '22 at 13:14
  • The discussion between fedja and River Li seems quite close to the full solution (or already done) upon computation of $I(1)$ and $I'(1)$. It seems we can put together results around $t=1$, by fedja and River Li. Around $t=0$, by Jack. – Sungjin Kim Jun 14 '22 at 01:42
  • I have a solution assuming $|I'(1)|/I(1) > 1/8$ and $I(1)>5/6$. – Sungjin Kim Jun 14 '22 at 01:45

8 Answers8

10

You may exploit the fact that $$ I(t) = 2\int_{0}^{+\infty}\frac{e^{-t x^2}}{\cosh(\pi x)}\,dx $$ like any moment, is a function with a convex logarithm. It follows that the graph of $J(t)=\log I(t)$ over $[0,1]$ lies above any tangent line. We have $J(0)=0$ and $$ J'(0)=\frac{I'(0)}{I(0)}=I'(0)=2\int_{0}^{+\infty}\frac{-x^2\,dx}{\cosh(\pi x)} = -\frac{1}{4},$$ so $J(t)\geq -\frac{t}{4}$ and $I(t)\geq \exp(-t/4)$ over $[0,1]$. By exploiting the log-convexity properties of $-I'(t)$ and $I''(t)$ and numerical approximations at $t=1$ the inequality can be improved up to $J(t)\geq -\frac{t}{4}+\frac{t^2}{16}$, so

$$ I(t) \geq \exp\left(-\frac{t}{4}+\frac{t^2}{16}\right) $$

which is sharper than $I(t)\geq \frac{e^{t/2}}{1+t}$.

Jack D'Aurizio
  • 353,855
  • Following your solution, I see that $J'(t)\geq -1/4 + t/4$. So, we might have $J(t)\geq -t/4 + t^2/8$. – Sungjin Kim Jun 11 '22 at 19:50
  • But, $J'(1)\geq 0$ at $t=1$ is false. So, I guess it could not be improved to $t^2/8$. I am getting $J''(0)=1/4$. Maybe I got incorrect $J''(0)$? – Sungjin Kim Jun 11 '22 at 20:53
  • Upon closer inspection, it appears that $J'(t)$ is actually concave so the direction of the inequality is the other way round, unfortunately. – ə̷̶̸͇̘̜́̍͗̂̄︣͟ Jun 11 '22 at 21:52
  • This is really interesting, as your bound $\exp\left(-\frac t4+\frac{t^2}{16}\right)$ graphically works for $0\le t\le1.268\cdots$ only. However, there is nothing currently to suggest why this wouldn't work for $t>1.268\cdots$, so it may be a bit harder than it seems. Graphically, the upper bound of $\exp\left(-\frac t4+\frac{t^2}8\right)$ holds for all $t\ge0$. – ə̷̶̸͇̘̜́̍͗̂̄︣͟ Jun 11 '22 at 21:58
  • Assuming $J'$ is concave on $[0,1]$ and numerical result for $J'(1)$, the inequality $J'(t)\geq -1/4+t/8$ becomes false at $t=1$. So, $J(t)\geq -t/4+t^2/16$ would not follow from the inequality for $J'$. – Sungjin Kim Jun 11 '22 at 22:15
  • Then there should be some other way to directly prove the inequality for $J$. It seems just not from $J'$. – Sungjin Kim Jun 11 '22 at 22:17
  • @JackD'Aurizio I've managed to show (using convexity of $J''$) that $$I(t)\ge\exp\left(-\frac t4+\frac{t^2}8-\frac{t^3}8\right)$$ but this is weaker than the original $e^{t/2}/(t+1)$ when $t$ is close to $1$. – ə̷̶̸͇̘̜́̍͗̂̄︣͟ Jun 12 '22 at 14:27
  • Did you prove the convexity of $J''$? – Sungjin Kim Jun 14 '22 at 02:11
  • I used the log-convexity of $I'(t)$ and the tangent lines of $\log I'(t)$ at $t=0$ and $t=1$ - the latter involved some numerical approximation - now clarified. – Jack D'Aurizio Jun 14 '22 at 09:11
  • Then you will obtain an inequality of the form $I'(t)\geq \exp(\cdots)$. Does this prove your inequality for $I(t)$? – Sungjin Kim Jun 14 '22 at 09:41
  • Those exponentials can be integrated! – Jack D'Aurizio Jun 14 '22 at 09:42
  • If you use two tangent lines and log-convexity of $-I'(t)$, you will obtain $-I'(t)\geq \exp(\cdots)$. So, it will give upper estimates. – Sungjin Kim Jun 14 '22 at 19:57
  • Agreed, but $I''(t)$ still is log-convex and you can use it. – Jack D'Aurizio Jun 14 '22 at 19:59
  • 2
    Okay. Firstly, integrating exponential will give possibly nonzero constant term. Secondly, it is still not clear how $t^2/16$ is obtained from repeated integration of the exponential. – Sungjin Kim Jun 14 '22 at 20:13
4

Let $I(t)=\int_{\mathbb{R}} e^{-tx^2}\textrm{sech} (\pi x)\ dx$, $J(t)=\log I(t)$ be the functions defined in Jack D'Aurizio's solution. In his solution, the main idea was that the graph of convex functions lies above any tangent lines.

Note that $I'(t)=\int_{\mathbb{R}} -x^2 e^{-tx^2} \textrm{sech} (\pi x) \ dx$ and $J'(t)=\frac{I'(t)}{I(t)}$. We have $$ \begin{align} J''(t)=\left( \frac{I'(t)}{I(t)}\right)'&=\frac{I''(t) I(t) - (I'(t))^2}{I(t)^2}\\ &= \frac{\iint_{\mathbb{R}^2} \left(\frac{x^4+y^4}2-x^2y^2\right)e^{-t(x^2+y^2)} \textrm{sech}(\pi x)\textrm{sech}(\pi y) dA}{ \iint_{\mathbb{R}^2}e^{-t(x^2+y^2)} \textrm{sech}(\pi x)\textrm{sech}(\pi y) dA}\\ &=\frac{\frac12\iint_{\mathbb{R}^2} (x^2-y^2)^2e^{-t(x^2+y^2)} \textrm{sech}(\pi x)\textrm{sech}(\pi y) dA}{ \iint_{\mathbb{R}^2}e^{-t(x^2+y^2)} \textrm{sech}(\pi x)\textrm{sech}(\pi y) dA}>0 \end{align} $$

Thus, $J$ is convex.

Using convexity of $I$ and the tangent line at $t=0$, we have by $I'(0)=-1/4$, $$ I(t)\geq 1-\frac t4. $$ We use this for $t\in [0,1/2]$. Then by $1-\frac t4 \geq \frac{e^{t/2}}{1+t}$ on $[0, 1/2]$, we have (1) on this range.

Using convexity of $J$ and the tangent line at $t=1$, we have by $J'(1)=\frac{I'(1)}{I(1)}$ and $\frac{|I'(1)|}{I(1)}>\frac18$, $I(1)>\frac56$ (numerical results, need verification), $$ J(t)\geq J'(1)(t-1) + J(1) \geq \frac18 (1-t) + \log(\frac56). $$ Then we have $$ I(t)\geq \frac56\exp\left( \frac18 (1-t)\right). $$ We use this for $t\in [1/2, 1]$. Then by $\frac56\exp\left( \frac18 (1-t)\right)\geq \frac{e^{t/2}}{1+t}$, we have (1) on this range.

A possible route to prove $I(t)\geq \exp\left( -\frac t4 + \frac{t^2}{16}\right)$ is as follows.

If we prove that $J'''(t)<0$ (I could not prove this), then the $J'$ is concave. With a help of numerical result $$ J'(\frac34) > - \frac 14 + \frac18 \cdot \frac34, $$ we would have for $t\in [0,\frac34]$, $$ J'(t)\geq -\frac14 + \frac18 t $$ Then for $t\in [0, \frac34]$, we have $$ I(t)\geq \exp\left(-\frac t4 + \frac{t^2}{16}\right).$$

For $t\in [\frac34, 1]$, the previous bound $$ I(t) \geq \frac56\exp\left( \frac18 (1-t)\right) $$ is stronger than $\exp\left(-\frac t4 + \frac{t^2}{16}\right)$.

Sungjin Kim
  • 20,102
  • I'm busy for the rest of the month but I'll attempt to prove the numerical bounds at $t=1$. For $I(1)$ it is possible to write the integral as a series involving $\operatorname{erf}$ and truncate until the $5/6$ is reached. – ə̷̶̸͇̘̜́̍͗̂̄︣͟ Jun 19 '22 at 14:20
2

Alternative proof for the original lower bound:

Problem 1: Let $0 \le t \le 1$. Prove that $$2\int_0^\infty\frac{\mathrm{e}^{-tx^2}}{\cosh\pi x}\,\mathrm{d}x \ge \frac{\mathrm{e}^{t/2}}{t+1}.$$

Using $\mathrm{e}^{-u} \ge(1 - \frac{u}{5})^5$ for all $u \ge 0$ (equivalently $\mathrm{e}^{-u/5} \ge 1 - u/5$), we have \begin{align*} &2\int_0^\infty\frac{\mathrm{e}^{-tx^2}}{\cosh\pi x}\,\mathrm{d}x\\ \ge\,& 2\int_0^\infty\frac{(1 - \frac{tx^2}{5})^5}{\cosh\pi x}\,\mathrm{d}x\\ =\,& 2\int_0^\infty\frac{1-t{x}^{2}+\frac25\,{t}^{2}{x}^{4}-{\frac {2}{25}}\,{t}^{3}{x}^{6}+{\frac {1}{125}}\,{t}^{4}{x}^{8}-{\frac {1}{3125}}\,{t}^{5}{x}^{10} }{\cosh\pi x}\,\mathrm{d}x\\ =\,& 1 - \frac14\,t + \frac18\,{t}^{2}-{\frac {61}{800}}\,{t}^{3}+{\frac {277}{6400}}\, {t}^{4}-{\frac {50521}{3200000}}\,{t}^{5} \end{align*} where we have used $$\int_0^\infty \frac{1}{\cosh \pi x}\,\mathrm{d} x = \frac12, \quad \int_0^\infty \frac{x^2}{\cosh \pi x}\,\mathrm{d} x = \frac18,$$ $$\int_0^\infty \frac{x^4}{\cosh \pi x}\,\mathrm{d} x = \frac{5}{32}, \quad \int_0^\infty \frac{x^6}{\cosh \pi x}\,\mathrm{d} x = \frac{61}{128},$$ $$\int_0^\infty \frac{x^8}{\cosh \pi x}\,\mathrm{d} x = \frac{1385}{512}, \quad \int_0^\infty \frac{x^{10}}{\cosh \pi x}\,\mathrm{d} x = \frac{50521}{2048}.$$ (See: The integral : $\frac{1}{2}\int_0^\infty x^n \operatorname{sech}(x)\mathrm dx$)

It suffices to prove that $$1 - \frac14\,t + \frac18\,{t}^{2}-{\frac {61}{800}}\,{t}^{3}+{\frac {277}{6400}}\, {t}^{4}-{\frac {50521}{3200000}}\,{t}^{5} \ge \frac{\mathrm{e}^{t/2}}{t+1}$$ or $$\left(1 - \frac14\,t + \frac18\,{t}^{2}-{\frac {61}{800}}\,{t}^{3}+{\frac {277}{6400}}\, {t}^{4}-{\frac {50521}{3200000}}\,{t}^{5}\right)(1 + t) \ge \mathrm{e}^{t/2}.$$ Let $g(t) := \mathrm{LHS}$ and $h(t) := \mathrm{e}^{t/2}$. It is easy to prove that $g(t)$ is concave on $[0, 1]$. So $g(t) - h(t)$ is concave on $[0, 1]$. Also, $g(0) - h(0) = 0$ and $g(1) - h(1) > 0$. Thus, $g(t) \ge h(t)$ on $[0, 1]$.

We are done.


Remark 1: The bound is stronger than $\mathrm{e}^{-t/4 + t^2/17}$ on $[0, 1]$, i.e. for all $t\in [0, 1]$, $$1 - \frac14\,t + \frac18\,{t}^{2}-{\frac {61}{800}}\,{t}^{3}+{\frac {277}{6400}}\, {t}^{4}-{\frac {50521}{3200000}}\,{t}^{5} \ge \mathrm{e}^{-t/4 + t^2/17}.$$ However, the bound is weaker than $\mathrm{e}^{-t/4 + t^2/16}$ when $t > 0.887...$

Remark 2: We can obtain a slightly better bound by using $\mathrm{e}^{-u} \ge(1 - \frac{u}{7})^7$.

River Li
  • 37,323
2

Sketch of a proof for the lower bound $\mathrm{e}^{-t/4 + t^2/16}$

Remarks: In my another answer, I proved a weaker lower bound by using a lower bound for $\mathrm{e}^{-tx^2}$. Here, we used another lower bound for $\mathrm{e}^{-tx^2}$.

Problem 2: Let $0 < t \le 1$. Prove that $$2\int_0^\infty\frac{\mathrm{e}^{-tx^2}}{\cosh\pi x}\,\mathrm{d}x\ge\exp\left(-\frac t4+\frac{t^2}{16}\right).$$

Proof:

Fact 1: For all $u \ge 0$, $$\mathrm{e}^{-u} \ge 1 - u + \frac{13}{30}u^2 - \frac{181}{1950} u^3 + \frac{9}{1000}u^4 - \frac{1}{3125}u^5.$$

Using Fact 1, we have \begin{align*} &2\int_0^\infty\frac{\mathrm{e}^{-tx^2}}{\cosh\pi x}\,\mathrm{d}x\\ \ge\,& 2\int_0^\infty\frac{1 - tx^2 + \frac{13}{30}t^2x^4 - \frac{181}{1950} t^3x^6 + \frac{9}{1000}t^4x^8 - \frac{1}{3125}t^5x^{10}}{\cosh\pi x}\,\mathrm{d}x\\ =\,& 1- \frac14\,t+{\frac {13}{96}}\,{t}^{2}-{\frac {11041}{124800}}\,{t}^{3}+{ \frac {2493}{51200}}\,{t}^{4}-{\frac {50521}{3200000}}\,{t}^{5} \end{align*} where we have used $$\int_0^\infty \frac{1}{\cosh \pi x}\,\mathrm{d} x = \frac12, \quad \int_0^\infty \frac{x^2}{\cosh \pi x}\,\mathrm{d} x = \frac18,$$ $$\int_0^\infty \frac{x^4}{\cosh \pi x}\,\mathrm{d} x = \frac{5}{32}, \quad \int_0^\infty \frac{x^6}{\cosh \pi x}\,\mathrm{d} x = \frac{61}{128},$$ $$\int_0^\infty \frac{x^8}{\cosh \pi x}\,\mathrm{d} x = \frac{1385}{512}, \quad \int_0^\infty \frac{x^{10}}{\cosh \pi x}\,\mathrm{d} x = \frac{50521}{2048}.$$ (See: The integral : $\frac{1}{2}\int_0^\infty x^n \operatorname{sech}(x)\mathrm dx$)

It suffices to prove that $$1- \frac14\,t+{\frac {13}{96}}\,{t}^{2}-{\frac {11041}{124800}}\,{t}^{3}+{ \frac {2493}{51200}}\,{t}^{4}-{\frac {50521}{3200000}}\,{t}^{5} \ge \mathrm{e}^{-t/4 + t^2/16}.$$

Let $f(t) := \mathrm{LHS}$. Let $$h(t) := 1-\frac14\,t+{\frac {3}{32}}\,{t}^{2}-{\frac {7}{384}}\,{t}^{3}+{\frac {25 }{6144}}\,{t}^{4}-{\frac {27}{40960}}\,{t}^{5}+{\frac {331}{2949120}} \,{t}^{6}. $$ (Note: $h(t)$ is the $6$-th order Taylor approximation of $\mathrm{e}^{-t/4 + t^2/16}$ around $t = 0$.)

It suffices to prove that $f(t) \ge h(t)$ and $h(t) \ge \mathrm{e}^{-t/4 + t^2/16}$ for all $t\in [0, 1]$. Omitted.


Proof of Fact 1:

Let $$F(u) := 1 - u + \frac{13}{30}u^2 - \frac{181}{1950} u^3 + \frac{9}{1000}u^4 - \frac{1}{3125}u^5,$$ and $$G(u) := -\frac{u^3 - 12u^2 + 60u - 120}{u^3 + 12u^2 + 60u + 120}.$$ (Note: $G(u)$ is $(3,3)$-Pade approximant of $\mathrm{e}^{-u}$ at $u = 0$.)

We have \begin{align*} &G(u) - F(u)\\ =\,& \frac{u^2(312u^6 - 5031u^5 + 3920u^4 + 174440u^3 + 282000u^2 - 4740000u + 7800000)}{975000(u^3 + 12u^2 + 60u + 120)}\\ \ge\,& 0. \end{align*}

It suffices to prove that $\mathrm{e}^{-u} \ge G(u)$.

Let $$u_0 = (4 + 4\sqrt 5)^{1/3} - 4(4 + 4\sqrt 5)^{-1/3} + 4.$$ Then $G(u_0) = 0$, and $G(u) > 0$ on $[0, u_0)$, and $G(u) < 0$ on $(u_0, \infty)$.

Let $H(u) := -u - \ln G(u)$. We have, for all $u \in [0, u_0)$, $$H'(u) = G(u) \frac{u^6}{(u^3 - 12u^2 + 60u - 120)^2} \ge 0.$$ Also, we have $H(0) = 0$. Thus, we have $H(u) \ge 0$ on $(0, u_0)$.

We are done.

River Li
  • 37,323
1

Too long for a comment :

We have the obvious inequalities for $x\geq 0$ and $t\in[0,0.25]$ :

$$2\int_{0}^{\infty\ }\frac{e^{-tx^2}}{\cosh\left(\pi x\right)}dx\geq 2\int_{0}^{\infty\ }\frac{e^{-tx}}{\cosh\left(\pi x\right)}dx\geq 2\int_{0}^{\infty\ }\frac{1-xt}{\cosh\left(\pi x\right)}dx$$

So we need to show for $x\geq 0$ and $t\in[0,0.25]$:

$$\frac{e^{\frac{t}{2}}}{t+1}\leq 2\int_{0}^{\infty\ }\frac{1-xt}{\cosh\left(\pi x\right)}dx$$

We have :

$$2\int_{0}^{\infty\ }\frac{1}{\cosh\left(\pi x\right)}dx=1$$

And :

$$2\int_{0}^{\infty\ }\frac{-xt}{\cosh\left(\pi x\right)}dx=-2tC/\pi^2$$

Where C is the Catalan's constant .

So we need to show :

$$\frac{e^{\frac{t}{2}}}{t+1}\leq 1-2tC/\pi^2$$

Wich is easier and true .

Edit we have numerically the inequality for $t\in[0.25,0.75]$ :

$$2\left(\int_{0}^{0.6}-\left(\frac{-1+x^{2}t-\left(3-\left((1-c)+2+ac(2-c)-ac(1-c)\ln a\right)\right)}{\cosh\left(\pi\cdot x\right)}\right)dx+\int_{0.6}^{1}\frac{\left(1-x^{2}t\right)}{\cosh\left(\pi\cdot x\right)}dx\right)-\frac{e^{\frac{t}{2}}}{1+t}> 0$$

Where $c=x^{2}t,a=e^{-1}$

In fact I have used this link lemma 5.1

On the other hand we have the inequalities for $x\in[0,0.6]$ and $t\in[0.25,0.75]$ :

$$e^{-tx^{2}}-1+x^{2}t-\left(3-\left((1-c)+2+ac(2-c)-ac(1-c)\ln a\right)\right)\geq 0$$

And :

$$e^{-tx^2}\geq 1-x^2t$$

Last edit :

It seems we have the inequality for $x\in[0,1.252+5\left(t-1\right)]$ and $t\in[0.95,1]$:

$$-\left(2-\left(2(1-c)+a^{b}c(2-c)-ac(1-c)\ln a\right)-x^{4}t-1\right)\leq e^{-tx^2}$$

Where $b=\frac{\pi}{e}$ and $a=e^{-1}$ , $c=x^{2}t$

Next it seems we have the inequality for $x\in[0,1.252+5\left(t-1\right)]$ and $t\in[0.95,1]$:

$$2\int_{0}^{1.252+5\left(t-1\right)}\frac{-\left(2-\left(2(1-c)+a^{b}c(2-c)-ac(1-c)\ln a\right)-x^{4}t-1\right)}{\cosh\left(\pi x\right)}dx+2\int_{1.252+5\left(t-1\right)}^{\infty}\frac{1}{\cosh\left(\pi x\right)^{2}}dx>\frac{e^{\frac{t}{2}}}{t+1}$$

1

Some thoughts. Let $\sigma^2={1 \over 2 t}$. Then $$ \int_{-\infty}^\infty\frac{e^{-tx^2}}{\cosh\pi x}\,dx = \mathbf{E} \left ( {\sqrt{2 \pi} \sigma \over \cosh \pi X}\right ), $$ where $X$ is normally distributed with zero mean and variance $\sigma^2$. Since $\cosh x \le e^{x^2 \over 2}$ then $\mathbf{E} \left ( {\sqrt{2 \pi} \sigma \over \cosh \pi X}\right ) \ge \mathbf{E} \left ( {\sqrt{2 \pi} \sigma e^{-{\pi^2 X^2 \over 2 }}}\right )$. Now Jensen's inequality can be used.

rrv
  • 561
  • I think the estimate $\cosh x \le e^{x^2 \over 2}$ is not enough (too loose). You can check $t = 1/2$. – River Li Jun 20 '22 at 15:02
1

Attempts:

We have the $\operatorname{sech}$ distribution, so the moments of the function $\operatorname{sech} \pi x$ are known and can be expressed in terms of the Euler functions. We have the formula:

$$\int_{-\infty}^{\infty} \frac{e^{-t x}}{\cosh{\pi x}} dx= \sec \frac{t}{2}$$ for $|\operatorname{Re} t|< \pi$

Now, to estimate the integrals $$\int_{-\infty}^{\infty} \frac{e^{-t x^2}}{\cosh \pi x}dx$$

we'll use the Gaussian quadrature of order $3$. The orhogonal polynomials for the distrubution $\frac{1}{\cosh\pi x}$ are $1$, $x$, $x^2 - \frac{1}{4}$, $x^3 - \frac{5}{4}x$, $\ldots$. The Gaussian quadrature of order $3$ (exact for polynomials of degree $\le 5$) is $$\int_{-\infty}^{\infty} \frac{f(x)}{\cosh \pi x} \simeq \frac{1}{10} f( -\frac{\sqrt{5}}{2})+ \frac{4}{5} f(0) + \frac{1}{10}f( \frac{\sqrt{5}}{2}) $$

For $f(x) = e^{-t x^2}$ we get $$\int_{-\infty}^{\infty} \frac{e^{-t x^2}}{\cosh \pi x} \simeq \frac{1}{5} e^{-\frac{5}{4} t} + \frac{4}{5}$$

It turns out that the RHS in the above approximation is larger for all $t>0$. To get a lower estimate for $t\in [0,1]$, substitute RHS with $$\frac{1}{4.5} e^{-\frac{4.5}{3.5} t} + \frac{3.5}{4.5}$$ This is larger than $\frac{e^{\frac{t}{2}}}{1+t}$ for $t\in [0,1]$.

This lower estimate is valid for $t\in [0,1]$. A lower estimate that works for all $t>0$ is given by another Gauss quadrature, $e^{-\frac{t}{4}}$.

orangeskid
  • 53,909
-1

I use a systematic approach.

$$f(t) = \int_{0}^{\infty}\frac{e^{-t x^2}}{\cosh(\pi x)}\,dx$$

Apply the Laplace transform

$$F(s)= \int_{0}^{\infty}f(t)e^{-ts}\,dt$$

or $$F(s) = \int_{0}^{\infty}\frac{dx}{(s+x^2)\cosh(\pi x)}=\frac{2}{\sqrt{s}} \int_{0}^{1}\frac{x^{2\sqrt{s}}}{1+x^2}$$

The last integral is due to Hardy

Now, taylor-expand the integrand in the last integral and integrate term by term to get

$$F(s)= \sum_{k=0}^{\infty}\frac{(-1)^k}{\sqrt{s}(\sqrt{s}+k+\frac{1}{2})}$$

To inverse the received expression we use a table of Laplace transform pairs.

Result

$$f(t)= \sum_{k=0}^{\infty}(-1)^k e^{t(k+\frac{1}{2})^2}\operatorname{erfc\left [\sqrt{t}(k+\frac{1}{2}) \right ]}$$

where $\operatorname{erfc(x)}$ is the Complementary Error Function.

From this result, for large $t$, the asymptotic behavior of $f(t)$ seems to be

$$\frac{2}{\sqrt{\pi t}}$$

But for moderate values of $t$ as required i am not sure how to get suggested bounds.

But in any case, since the series is alternating, the error should be less than the absolute value of the first omitted term.

Martin Gales
  • 6,878