Some days before i have answered a question (4463639) involving similar expressions.
There is also some link to Wolfram on the Incomplete Beta Function, and the following relations were displayed:
$$
\begin{aligned}
B(z;a,b)
&=
\int_0^z
u^{a-1}(1-u)^{b-1}\; du
\\
&=
\frac 1az^a\; {}_2F_1(a,1-b;\ a+1;\ z)
\\
&\qquad\qquad\qquad= z^a\sum_{n\ge 0}\frac{(1-b)_n}{n!\;(a+n)}\; z^n\qquad\text{if convergent}
\ ,
\\
\text{ and also }&
\\
B(z;a,b)
&=
\int_0^z
u^{a-1}(1-u)^{b-1}\; du
\\
&=
\int_0^{z/(1-z)}\frac{v^{a-1}}{(1+v)^{a+b}}\;dv
\end{aligned}
$$
Notations slightly collide, for this reason i will use
$$
w = (\sqrt 3-1)^{-1/2}\ ,
$$
and integrate on $[0,w]$.
(Q1) We are dealing with analytic functions, but we should avoid values for the (analitically extended) Gaussian hypergeometric function in the slit $(1, \infty)$, here is a link i found on this aspect: EM on hypergeometric functions.
(Q2) Let us compute the integral.
$$
\begin{aligned}
6\int_0^w\frac 1{(1+x^6)^{1/2}}\; dx
&=
6\int_0^{w^6}\frac 1{(1+v)^{1/2}}\; \frac 16\; v^{-5/6}\; dv &&\text{ with }
v = x^6
\\
&=
\int_0^{w^6}\frac {v^{a-1}}{(1+v)^{a+b}}\; dv &&\text{ with }
a=\frac 16\ ,\ b=\frac 13
\\
&=
\int_0^{z/(1-z)}\frac {v^{a-1}}{(1+v)^{a+b}}\; dv&&\text{ with }
z = \frac 19(3+2\sqrt 3)
\\
% &=
% B\left(z;a,b\right)
% \\
&= B\left(z;\frac 16,\frac 13\right)
\\
&= B\left(1;\frac 13,\frac 16\right)
-
\underbrace{B\left(1-z;\frac 13,\frac 16\right)}
_{\color{red}{\text{Show it is }\frac 14B\left(\frac 13,\frac 16\right)\ !}}
&&\text{ and let }Z = 1-z = \frac 29(3-\sqrt 3)
\ .
\end{aligned}
$$
(Regarding (Q1) we can pass from $B(z,a,b)$ to an ${}_2F_1$-value for the argument $z$ with $z\approx 0.718233512793\in (0,1)$,
also the last expression $B(1-z;b,a)$ has argument in $(0,1)$- so we have convergence if series are written. But we do not need this.)
Let us show the red marked equality:
$$
\begin{aligned}
B\left(1-z;\frac 13,\frac 16\right)
&=
B\left(Z;\frac 13,\frac 16\right)
=
\int_0^{V:=Z/(1-Z)}\frac{v^{1/3\ -\ 1}}{(1+v)^{1/3\ +\ 1/6}}\; dv
\\[2mm]
&\qquad\text{ and with $v=x^3$, $y=(1+v)^{1/2}$, }
\\
&\qquad\text{ so that $y^2=1+v=1+x^3$, and $dv=3x^2\; dx$, and $v^{1/3\ -\ 1}=x^{-2}$}
\\[2mm]
&=
3\int
_{(x,y)=(0,\ 1)}
^{(x,y)=\left(V^{1/3}\ ,\ (1+V)^{1/2}\right)
=\left(\sqrt3-1\ ,\ \sqrt{6\sqrt 3-9}\right)}
\ \frac{dx}y
=
3\int_Q^P\frac{dx}y
\\
&=
3\int_O^P\frac{dx}y
-
3\int_O^Q\frac{dx}y
\ ,
\end{aligned}
$$
and the last integral is a path integral on $E(\Bbb R)$ where $E$ is the elliptic curve $y^2=x^3+1$. Let us use the notations $a=\sqrt 3$ and $b=\sqrt{6a-9}$
It turns out that the involved points
$$
\begin{aligned}
P &=(a-1\ ,\ b)=\left(\sqrt3-1\ ,\ \sqrt{6\sqrt 3-9}\right)\ ,\\
Q &=(0,1)\ ,
\end{aligned}
$$
from $E(K)$ satisfy $4P=O=3Q$.
Also $2P=(-1,0)$, and $2Q=-Q=(0,-1)$.
Here is a piece of code giving this information in sage:
B = sqrt(6*sqrt(3) - 9)
K.<b> = NumberField( B.minpoly(), embedding=B.n() )
a = (b^2 + 9)/6
E = EllipticCurve(K, [0, 1])
P = E.point( (a - 1, b) )
P = E.point( (0 , 1) )
print(f'E = {E}')
print(f'The point P(a - 1, b) in E(K) has order {P.order()}.')
print(f'The point Q( 1, 0) in E(K) has order {Q.order()}.')
And we get (slightly manually rearranged to fit in the line):
E = Elliptic Curve defined by y^2 = x^3 + 1 over Number Field in b
with defining polynomial x^4 + 18*x^2 - 27 with b = 1.179959679570986?
The point P(a - 1, b) in E(K) has order 4.
The point Q( 1, 0) in E(K) has order 3.
Because $dx/y$ is invariant w.r.t. the additive operation on $E$ we have:
$$
\begin{aligned}
\int_O^P\frac{dx}y
&=
\int_{P}^{2P}\frac{dx}y =
\int_{2P}^{3P}\frac{dx}y =
\int_{3P}^{O}\frac{dx}y \ ,
\\[2mm]
\int_O^Q\frac{dx}y
&=
\int_Q^{2Q}\frac{dx}y =
\int_{2Q}^O\frac{dx}y
\ .
\end{aligned}
$$
Now use parametrizations of $E(\Bbb R)$ as follows. Let $x$ go from $\infty$ to $-1$, associate the path $\gamma_+(x)=(x, \ +\sqrt{1+x^3})\in E(\Bbb R)$, then let $x$ go from $-1$ to $+\infty$, and associate the path $\gamma_-(x)=(x, \ -\sqrt{1+x^3})\in E(\Bbb R)$. Let $\gamma$ be the full path, $\gamma =\gamma_+\cup\gamma_-$.
Let $J$ be the integral of $dx/y$ on $\gamma$,
$J=-2\int_{-1}^\infty \frac{dx}{\sqrt{1+x^3}}$.
Maybe it is best to have a picture, and to associate all integrals to fractions of an integral on the "whole contour $\gamma$ taken in trigonometric sense":

The two points on $Oy$ are $\pm Q$, the two points on the vertical $x=\sqrt3-1\approx 0.732$ are $\pm P$, the last marked point is $2P=(-1,0)$. We obtain
$$
\begin{aligned}
\int_{\sqrt 3-1}^\infty\frac{dx}{\sqrt{1+x^3}}
&=
\int_{\gamma_+\ ,\ x\in[\sqrt 3-1,\ \infty)}\frac{dx}{\sqrt{1+x^3}}
=
-\int_O^P\frac{dx}y
=
-\frac 14 J\ ,
\\
\int_{-1}^{\sqrt 3-1}\frac{dx}{\sqrt{1+x^3}}
&=
\int_{\gamma_+\ ,\ x\in[-1, \sqrt 3-1]}\frac{dx}{\sqrt{1+x^3}}
=
-\int_P^{2P}\frac{dx}y
=
-\frac 14J \ ,
\\
\int_0^\infty\frac{dx}{\sqrt{1+x^3}}
&=
\int_{\gamma_+\ ,\ x\in[0,\infty)}\frac{dx}{\sqrt{1+x^3}}
=
-\int_0^Q\frac{dx}y
=
-\frac 13 J\ ,
\\
2\int_{-1}^0\frac{dx}{\sqrt{1+x^3}}
&=
\int_{\gamma_+\ ,\ x\in[-1,0]}\frac{dx}{\sqrt{1+x^3}}
+
\int_{\gamma_-\ ,\ x\in[-1,0]}\frac{dx}{\sqrt{1+x^3}}
=
-\int_Q^{2Q}\frac{dx}y
=
-\frac 13 J\ ,
\\
&\qquad\text{ and from here we can conclude}
\\
\frac 13B\left(Z;\frac 13,\frac 16\right)
&=
\int_Q^P\frac {dx}y
=
\int_0^ {\sqrt3-1}\frac {dx}{\sqrt{1+x^3}}
\\
&=
\int_{-1}^ {\sqrt3-1}\frac {dx}{\sqrt{1+x^3}}
-
\int_{-1}^ 0\frac {dx}{\sqrt{1+x^3}}
\\
&=
-\frac 14J + \frac 16J
=
\left(\frac 14-\frac 16\right)
\cdot 3
\int_0^\infty\frac {dx}{\sqrt{1+x^3}}
=
\frac 14
\int_0^\infty\frac {dx}{\sqrt{1+x^3}}
\\
&=
\frac 1{12}
B\left(\frac 13,\frac 16\right)
\end{aligned}
$$
$\square$
\binom{n}{k}
. Would you please edit your question to fix those? – Joseph Camacho Jun 07 '22 at 18:31